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Abstract. Functions which are covariant or invariant under the transformations of a compact
linear group can be expressed advantageously in terms of functions defined in the orbit space
of the group, i.e. as functions of a finite set of basic invariant polynomials. The equalities and
inequalities defining the orbit spaces of all finite coregular real linear groups (most of which are
crystallographic groups) with at most four independent basic invariants are determined. For each
groupG acting in the Euclidean spa@, the results are obtained through the computation of a
metric matrix 2 (p), which is defined only in terms of the scalar products between the gradients
of a set of basic polynomial invariantg; (x), ... p,(x), x € R" of G; the semi-positivity
conditions 13([7) > 0 are known to determine all the equalities and inequalities defining the
orbit spaceR"/G of G as a semi-algebraic variety in the spdeé spanned by the variables
p1,---, Pg. Inarecent paper, thB-matrices, fory < 4, have been determined in an alternative
way, as solutions of a universal differential equation; the present paper yields a partial, but
significant, check on the correctness and completeness of these solutions. Our results can be
easily exploited, in many physical contexts where the study of covariant or invariant functions
is important, for instance in the determination of patterns of spontaneous symmetry breaking,
in the analysis of phase spaces and structural phase transitions (Landau’s theory), in covariant
bifurcation theory, in crystal field theory and in most areas of solid-state theory where use is
made of symmetry adapted functions.

1. Introduction

Functions which are covariant or invariant under the transformations of a compact linear
group (hereafter abbreviated &3G) G play an important role in physics, and the
determination of their properties is often a basic problem to solve.

An example, which is relevant both to elementary particle and solid-state physics, is
offered by the determination of the possible patterns of spontaneous symmetry breaking
in theories in which the ground state of the system is determined by the minimum of an
invariant potentialV (x).

Let us sketch the relevant physical context. The symmetry g the formalism
used to describe a physical system acts as a permutation group on the set of the solutions of
the evolution equations. When the ground state of the system is invariant only with respect
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to a proper subgroup, C G, the G-symmetry is said to bepontaneously brokefsee, for
instance [1-4] and references therein) aglturns out to be thérue symmetry group of
the system [5].

One of the most common classical mechanisms of spontaneous symmetry breaking
can be formalized in the following way. The ground state is represented by a wgctor
belonging to the Euclidean spa®, on whichG acts as a group of linear transformations;
xo is determined as the point at whichGinvariant potentialV (x) assumes its absolute
minimum (V might be a Higgs potential in a gauge field theory or a thermodynamic potential
in a Landau theory of structural phase transitions), @gds the isotropy subgroup @ at xg
(the little group ofGg). Generally, the potential also depends on parametéfer instance
scalar self-couplings in Higgs potentials, or pressure and temperature in thermodynamic
potentials), that cannot be determined from invariance requirements under transformations
of G. In this casexp and Go can depend on the's, and various patterns of spontaneous
symmetry breaking are allowed, corresponding to distinct strucpivasesof the system.

In supersymmetric field theories the absolute minimum of the potential controls both the
spontaneous symmetry and supersymmetry breaking (see, for instance [6] and references
therein), and often the features of the two breaking schemes are related [7].

In all the cases just mentioned, the determination of the ground state of the system
rests on a precise determination of the poigt where the potential takes on its absolute
minimum, and the determination has to be analytical, since the isotropy subgroGpatof
nearby points may be different.

Even if trivial in principle, the analytical determination of the minimum of an
invariant potential is generally a difficult computational task (even if one uses polynomial
approximations for the potential), owing to the large numbef the variablesx; which
are often involved. An additional difficulty is related to the degeneracy of the stationary
points of the potential, which is an unavoidable consequence of the invariance properties
of the potential; In fact, it prevents a direct application [8] of Morse’s theory [9]. Also the
use of an extended Morse theory [10] seems not to give large advantages [11].

In 1971, Gufan [12, 13] proposed a new, more economical, approach to the problem,
which was based on the remark thatGainvariant functionV (x) can be expressed as
a function V(pl, ..., pg) Of a finite setp(x) = (p1(x), ..., py(x)) of basic polynomial
invariants. When the point € R? is in the domain spanned Ipy(x), x € R", the function
V(p) has the same range &(x), but is not plagued by the same degeneracies. Gufan's
proposal found immediate applications in crystal field theory (see [14-19], to cite but a
few of the pioneering papers on the subject). A full and correct exploitation of his idea
required, however, an exact determination of the ranges of the fungijang a non-trivial
problem that was only solved ten years later, when it was independently remarked [20]
that anyG-invariant function, being a constant along each orbiGofcan be considered a
function in the orbit spac®”/G of the action ofG in R". As a consequence, the problem
of determining the stationary points &f(x) could be more economically reformulated
in R"/G [21], where thep;'s can be used advantageously to parametrize the orbits. In
R"/G, the images of all the points dk* with the same invariance properties under
transformations form smooth sub-manifolds, which are usually calteata By varying
the parameterg, the location of the minimum oV (x; ) may shift to a different stratum,
thus causing a (structural) phase transition of the system.

A sensible progress in the characterization of the geometry of the orbit spaces of the
CLGs was achieved using the powerful tools of geometric invariant theory [22, 23], which
led to the discovery of a simple recipe allowing us to build a concrete image of the orbit
space of any lineacLG and its stratification [20, 21, 24, 25]. It was shown that the orbit
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spaces of theLGs are connected semi-algebraic varieties, whose defining equations and
inequalities can be expressed in the form of positivity conditions of matikigs built
only in terms of the gradients of the basic polynomial invarigntér), . .., p,(x):

A n a » a
Pu(px) =Y Pa(x) 0pp(x)

. b=1...q. 1
ll Bx,- Bx,» a a ()

Using this result, one can obtain, for instance, a concrete realization of the orbit space
of any coregular finite linear group. In fact, the class of these groups has been shown
to coincide with the class formed by the finite groups generated by reflections (which are
almost all crystallographic groups) and explicit or algorithmic descriptions of their basic
polynomial invariants have been given by many authors (see for instance [26—32]).

For a generatLG, the matter is not that simple, since the determination of a minimal
complete set of basic invariant polynomials, i.e. of a minimal integrity basis of the ring of
polynomial invariants ofG, may be a difficult problem to solye This serious handicap
in the direct approach to the determination of tAematrix associated to a generalG
stimulated the research, and led to the discovery, of an alternative indirect method of
computation of theP-matrices associated tw.Gs These matrices have been shown [36—
38] to be solutions of anasterdifferential equation, satisfying convenient initial conditions
(allowable solutions The master equation assumes a particularly simple canonical form
(canonical equatiopfor compact coregular linear groups (hereafter abbreviateztass).

The form of the canonical equation is the same foralLcs it does involve only the
degrees of the elements of the integrity bases as free parameters.

The master equation approach to the determination and classification Btnferices
gives strong support to the conjecture that the orbit spaces of all the compact linear groups
possessing a basis gfindependent basic polynomial invariants with the same degrees can
be classified in a finite (and small, for small dimensions and degrees) number of isomorphism
classes. The conjecture has been proved to hold trug fo#.

This fact makes the orbit-space approach to the study of covariant functions, and, in
particular, of spontaneous symmetry breaking, particularly appealing. In fact, invariance
properties are often the only bounds which are imposed on the potential (beyond regularity
and stability properties and/or bounds on the degree, when the potential is a polynomial
function). If the symmetry groups of the potentials of different theories share isomorphic
orbit spaces, the potentials have the same formal expression and the same domain when
written as functions in orbit space, despite the completely different physical meaning of the
variables and parameters involved in the definition of the potentials. Thus, the problems of
determining the geometric features of the phase space, the location and stability properties of
the minima of the potential, the number of primary strata (and, consequently, the maximum
number of phases) and the allowed transitions between primary strata are identical in all
these theories [21, 35-37].

The pursuit of the ambitious program of determining the orbit spaces of attithg
following the master equation approach, has already given encouraging results, but has left
some serious open problems [38]. The main ones are listed below; some of them will be
dealt with and partially solved in this paper:

(i) All the allowable solutions of the canonical equation have been determineg {or
(see [37, 39] hereafter referred to as | and Il), while Jot 4, the determination of all

1 G is said to be coregular if there is no algebraic relation among the elements of a minimal set of its basic invariant
polynomials, i.e. among the elements of the minimal integrity bases of the ring of its polynomial invariants.

1 A complete classification of compact coregular linear groups is known, at present, only for finite groups and for
simple [33] and semisimple [34] Lie groups.
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the allowable solutions appears to be still possible, but extremely lengthy. The set-up of
an inductive procedure for the determination of at least a part of the allowable solutions
of the canonical equation is in progress [40, 41].

(il) The canonical equation and the associated initial conditions are only a set of necessary
conditions that theP-matrices of thecLGs must satisfy; even if quite stringent, they
need not be sufficient. Therefore, once the allowable solutions of the canonical equation
have been determined, the problem remains of selecting those which are really generated
by a group. In this paper we shall give a partial answer to this problem in the case of
coregular groups witly < 4.

(iii) An effective formalization of the condition that there is no algebraic relation among
the elements of a minimal integrity basis (minimality regularity condition) has not
yet been found, nor used, in | and Il. Thus, it cannot be excluded that some of the
allowable P-matrices determined in | and Il are indeed associated to non-minimal bases
or to non-coregular groups.

(iv) A sound analysis of the structure of the master equation in the general non-coregular
case is still missing; some results have been obtained only for non-coregakawith
a sole independent relation among the elements of the minimal integrity bases [42].

The paper will be organized in the following way. We shall begin, in section 2, with
a short survey of the geometry of linear group actions, of the properties of the canonical
equation, and we shall briefly argue on the possibility of classifying the orbit spaces of the
CCLGs through the determination of the allowable solutions of the canonical equation. In
sections 3 and 4 we shall determine explicitly tRematrices associated to all the finite
irreducible and, respectively, reducible reflection groups with no more than four independent
basic invariants. The results will be obtained using the explicit form of the basic invariant
polynomials of the reflection groups that can be found in the mathematical and physical
literature. A comparison of our results with the allowable solutions of the canonical equation
reported in | and Il will allow us to identify generating groups for all the irreducible, and
some of the reducible, allowable-matrices.

After a few concluding remarks on our mathematical results, collected in section 5, in the
last section we shall illustrate how they can be used in one of the specific physical contexts
mentioned in the introduction. Our aim will be to show that, despite the sophisticated
mathematical tools that have been used to achieve the results presented in the paper,
their practical exploitation in physical contexts only requires an elementary use of standard
analysis, geometry and group theory. The physical problem we shall deal with in section 6
has been studied by various authors in the past [53]; our revisitation will not lead to
essentially new results, but to the fact that explicit knowledge of the algebraic relations
defining the strata will allow us to arrive at explicit analytic solutions in a particularly
simple way.

2. An overview of the geometry of linear group actions

In this section, we shall first define most of our notation and recall, without proof, some
results concerning invariant theory and the geometry of orbit spacasse{see for instance
[43, 44] and references therein), then we shall introduce the first definitions and the basic
tools for our subsequent analysis.

For our purposes, it will not be restrictive to assume thhats a matrix subgroup of
0, (R)7 acting linearly in the Euclidean spaé¥.

1 The stronger assumptiasi € SO, (R) introduced in | and Il is due to a slip; in fact, the unimodularity condition
has never been used in these references.
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2.1. Orbits and strata

We shall denote by = (x1, ..., x,) a point ofR". The groupG acts inR” in the following
way:

xl=(g-x) = ng,-jxj xeR" geqG. (2)
1

The G-orbit ; throughx € R"” and theisotropy subgroupG; of G atx € R" are defined
by the following relations:

Q:={g-x|geG) Gi={geG|g x=x}. (3

The invariance of the Euclidean norm under orthogonal transformations assures that the
G-orbit throughx is contained in the sphere of radiiscentred in the origin oR”, while
the linearity of the action o& in R” implies

G: = Gy; VA eR,. (4)

The isotropy subgroup of at the origin ofR"” coincides withG. The isotropy subgroups
G,z of G, at points lying on the same orlii; are conjugated subgroups @t

Gei = gGig™t VgeG. (5)

The class of all the subgroups 6f conjugated taG; in G will be said to be theorbit
type of 2z or, equivalently, of the points dix; it specifies the symmetry properties Qf
under transformations induced by elementsGof

The set of all the points € R” (or, equivalently, of all the orbits of;) with the same
orbit type form anisotropy-type stratum of the action 6f in R”, hereafter called simply
a stratum ofR". All the connected components of a stratum are smooth iso-dimensional
sub-manifolds ofR”.

2.2. The orbit space

The orbit spaceof the action ofG in R” is defined as the quotient spaké/G (obtained
through the equivalence relation between points belonging to the same orbit) endowed with
the quotient topology and differentiable structure. We shall denoter liie canonical
projectionR"” — R"/G. Whole orbits ofG are mapped byr into single points ofR"/G.
The image throughlr of a stratum ofR” will be called an isotropy-typé stratum of R/ G;
all its connected components turn out to be smooth iso-dimensional manifolds.

Almost all the points ofR”/G belong to a unique straturg,, the principal stratum
which is a connected open dense subsék'pgfG. The boundaryx,\%, of £, is the union
of disjoint singular strata. All the strata lying on the boundaBA X of a stratumx of
R"/G are open int\x.

The following partial ordering can be introduced in the set of all the orbit types:
[H] < [K]if H is a subgroup of a subgroup &f conjugated withK. The orbit type H]
of a stratumX is contained in the orbit typed,] of all the strataZ,, lying in its boundary;
therefore, more peripheral stratal®f/ G are formed by orbits with higher symmetry under
G transformations. The number of distinct orbit types(fs finite and there is a unique
minimum orbit type, theprincipal orbit type corresponding to the principal stratum; there
is also a unique maximum orbit typ&], corresponding to the image throughof all the
points of R”, which are invariant undet.

A faithful image of R”/G can be obtained making use of a basic result of the geometric
approach to invariant theory in the following way.
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A function f(x) is said to beG-invariant if

flg-x)=fx) Vx € R" g€G. (6)

The set of all realG-invariant, polynomial functions of forms a ringR[x]°, that admits a
finite integrity basis [45, 46]. Therefore, there exists a finite minimal collection of invariant
polynomials p(x) = (p1(x), p2(x), ..., py(x)) such that any element € R[x]° can be
expressed as a polynomial functiéhof p(x):

F(p(x)) = F(x) Vx € R". (7)

The polynomialF'(p) will be said to have weighty, if w is the degree of the polynomial
F(x); it will be said to bew-homogeneous it (x) is.

The elements of a (minimal) basis &[x]° can be chosen to be homogeneous
polynomials. The numbey of elements of a minimal integrity basis and their homogeneity
degreesd;’s are only determined by the group.

To avoid trivial situations, in this paper we shall only consider linear groups with no
fixed points, but for the origin oR”. In this case, the minimum degree of the elements of
a minimal integrity basis is necessarily 2, and the following conventions can be adopted:

hzd>...dy=2  px)=|x|?=) 5 (8)
1

Hereafter, by a minimal integrity basis 6f (abbreviated intaviB of G) we shall always
mean aminimal homogeneous integrity bad the ring of G-invariant polynomials, for
which the conventions of (8) hold true.

SinceG is a compact group, the orbits 6f are separated by the elements afila of
G, i.e. at least one element ofMB of G takes on different values on two distinct orbits.
Thus, the elements of miB of G provide a good parametrization of the pointsif/G,
that turns out to also be smooth, since the orbit mpapR” — RY, which maps all the
points of R” lying on an orbit ofG onto a single point oR?, induces a diffeomorphism of
R"/G onto a semialgebraig-dimensional connected closed subseRéf

2.3. Coregular and non-coregular groups

The groupG is said to becoregular if the elements of itsviBs are algebraically, and
therefore functionally, independent. @ is non-coregular, the elements of any one of its
MiBs satisfy a certain number of algebraic identitiesRift

Fa(p(x)) =0 A=1,... K. (9)
The associated equations
Fa(p)=0 A=1....K (10)

define an algebraic variety iR?, which will be called thevariety Z of the relationgamong
the elements of thens). The numberkK will be said thecoregularity orderof G. If G is
coregular, there are no relations among the elements ofigks the coregularity order of
G is zero and we shall s = R".

From now on, in this paper, we shall deal with coreguaés.
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2.4. TheP(p) matrix

A characterization of the image(R") of the orbit space of; as a semi-algebraic variety
can be easily obtained through a mat#xp), defined only in terms of th&-invariant
Euclidean scalar products between the gradients of the elements afgtHg (x)}:

"\ 0pa(x) pp(x) A
Pu) =) T~ Pyp)  ab=1....q (11)
1 Xi 8)6,'
where in the last member, use has been made of Hilbert's theorem, in order to express
P, (x) as a polynomial function opy(x), ..., py(x).

The following fundamental theorem clarifies the meaning and points out the role of the
matrix P(p):

Theorem 2.1Let G be a compact coregular subgroup @f,(R), p the mapR" — R¢Y
defined by the homogeneowsB {pi(x), p2(x), ..., p,(x)} and 13(p) the matrix defined

in (11). ThenS = p(R") is the unique semialgebraic connected subset of the variety
Z C RY of the relations among the elements of th®s where P(p) is positive semi-
definite. Thek-dimensional primary strata af are the connected components of the set
W& = {p e Z;| P(p) > 0,rank P(p)) = k}; they are the images of the connected
components of the k—dimensional isotropy type strat®ofG. In particular, the varietys

of the interior points ofS, where 2 (p) has the maximum rank, is the image of the principal
stratum.

It will be worthwhile to note that, for coregular groups,= RY and that the image of
the unit sphere oR” under the orbit map (x) is acompact connecte@ — 1)-dimensional
semialgebraic variety in the spat&—! spanned by the variables, ..., p,—1.

The following properties, which are common to all the matriée¢s), are more or less
immediate consequences of the definition of these matrices:

P1 Symmetry, homogeneity and bounds on the last row and colurhe. matrix P (p) is a
g x ¢ symmetric matrix, whose elemenss, (p) are realw-homogeneous polynomials with
weight

w(Pup) = dy +dy — 2. (12)
The last row and column are determined by the degrees afiighe
Pya(p) = Pag(p) = 2d,pa a=12..,q. (13)

P2 Tensor character. The matrix elements of (p) transform as the components of a rank 2
contravariant tensor undefis transformations that maintain the conventions fixed in (8)
(these transformations will be hereafter calledTs). In fact, let{p(x)} and {p’(x)} be
distinct MiBs; the p/ (x)’s, being G-invariant polynomials, can be expressed as polynomial
functions of thep, (x)’s:

p'y=04p) a=12...,9-1 (14)
where the polynomial functiop/,(p) only depends on the,’s such that d, < d,. Then,

P'(p'(p)) = J(p)P(p)J" (p) (15)
where we have denoted bi(p) the Jacobian matrix of the transformation:

Jab(p) = 3P4 (P)/3ps a,b=1....4 (16)

T Since in our conventions thgth element of anyiB is fixed to equaIZ'l’i x,?, when defining anieT we shall
always understand the conditiqq (p) = py-
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the matrixJ turns out to be upper-block triangular and the determinan® gf) to be a
relative invariant of the group of thisTs.

2.5. Classification of the orbit spaces@fLGs

Two matricesP(p) and P'(p’) will be said to beequivalentif they are connected by
a relation like (15), where/(p) is the Jacobian matrix of &BT p’ = p/(p). Thus,
the P-matrices computed from differentiss of the samecLG are equivalent, and the
semialgebraic varietieS andS’ defined by the positivity conditions imposed #p) and
P'(p'), respectively, are equivalent concrete realizations of the orbit SRAc6.

SincegG is coregular, its orbit space is completely determined by the positivity conditions
of a P-matrix computed from any one of itsiBs; for non-coregular groups, also a complete
set of relations among the,’'s has to be specified.

2.6. Isomorphism classes of orbit spaces

The notions ofIBTs (see equation (14)) and of equivalencePefnatrices (see equation (15))
can be extended to the case of different coregular gréupadG’, provided that theimiBs
have the same number of elements, with the same degrees{plleind {p’'} be miBs for

G andG’, respectively.

Definition 2.1.The orbit spac®”/G andR" /G’ of the compact coregular linear grougs
and G’ will be said to be isomorphic if the associat®dmatricesP (p) and P'(p’) satisfy
(15), where the transformatiopl = p’(p) has all the formal properties of aiBT.

_If G andG’ have isomorphic orbit spaces, then the images of their orbit siheesl
&', associated with th&ss {p} and{p’} are isomorphic semialgebraic varieties:

S =pS). (17)

Thus the classification of the isomorphism classes of the orbit spaces oftherests
on the determination of a representative for each class of equivAlgnt matrices (and,
for non-coregular groups, on the determination of the possible relations among the elements
of the miBs). This can be done, in principle, for aticLGs The matricesﬁ(p) have
been shown [36], in fact, to be solutions ofcanonical differential equatignsatisfying
convenient initial conditionsallowable solutions). The canonical equation does involve
only the degrees$dy, do, .. ., d,} of themMiBs as free parameters, as we shall see in the next
subsection.

2.7. Boundary and positivity conditions

For coregular groups, the orbit spagedefined in theorem 2.1, is a connectedimensional
semialgebraic variety dR? and, like all semialgebraic varieties [47], it presents a natural
stratification in connected semialgebraic sub-varietiecalled primary strata We shall
denote byZ(¢) the ideal formed by all the polynomials im € R? vanishing ong. Every
f(p) € Z(6) defines an invariant polynomial function " vanishing at all the points
lying in the setZ; = p~1(6):

f) =f(px)=0  Vxex. (18)

A simple example of a compact connected semialgebraic varieR? o yielded by a polyhedron. Its interior
points form its unique three-dimensional primary stratum, while two-, one- and zero-dimensional primary strata
are formed, respectively, by the interior points of each face, by the interior points of each edge, by each vertex.
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The gradien®f (x) is obviously orthogonal t&, at everyx € X, but, it must also be
tangent toX; since f(x) is a G-invariant function [43, 24]. As a consequence,

q
0=0f(x)=Y_,df(p) Ipp(x)  VxeZf. (19)
1

p=p(x)

By taking the scalar product of (19) witbp,(x), we end up with the followindooundary
conditions[38]:

q
> P (p)dyf(p) € I(5) VfeZ) and V6 CS. (20)
1
If {0 (p), 0L (p). ..., QD (p)} is an integrity basis foZ (5), (20) is equivalent to
q N m R N
> P800 () =" 42 (p) 0P (21)
1 1

where their’s are w-homogeneous polynomial functions pf

In the particular case in which is a (g — D-dimensional primary stratum, the ideal
Z(6) has a uniqudrreducible generator,Q“ (p), and (21) reduces to the simpler form
[36, 38]

q A A A ~
Y L Pa(d 0P () =20 0P () a=1....q. (22)
1

The validity of (21) can be extended to the case in wlicis a union of primary strata.
In particular, the ideal (B), associated to the unidf of all the (¢ — 1)-dimensional strata
of S (whose closure forms the boundary &f has a unique generatdr(p):

Ap) =112 w (23)

6B

and the following relation is satisfied:

q
Y Par(p) HA(p) = 2 (P A(p) (24)
1
wherer™® (p) is a contravariant vector field wit-homogeneous components, and
M)y =2 P(p). (25)
6B

The results summarized below have been proved in [37].

The vectorA®(p) can be reduced to the canonical forffV (p) = 25,,w(A) in
particularmiBs, the so-calledA-bases which are intrinsically defined. In aA-basis, the
boundary conditions assume the followiognonicalform:

q
> P (P)A(p) = 8,w(A)A(p)  a=1....q. (26)
1

From equation (26) one deduces that, in evérpasis, the following facts hold true:

(i) The pointp©® = (0,...,0,1) lies in S; it is the image of aG-orbit lying on the unit
sphere ofR”.
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(i) A(p) is a factor of def(p); its weight is bounded:
R q
2dy < w(A) < w(detP) =2 d,— 2 (27)
1

and it can be normalized at©:
Ap®) =1 (28)

we shall call it thecomplete active factoof detP (p).
(iii) The restriction,A(p)|,=1, of A(p) to the image of the unit sphere &' in R? has a
unique local non-degenerate maximum lyingpé?; thus,

8D(A(p)|p:p(0) =0 a:l,...,q—l. (29)

(iv) P(p@) is block diagonal, each block being associated to a subsg}’sfsharing the
same degree, and, in a subclassdebases gtandardA-base$, it is diagonal:

Py (p®) = dydpSu ab=1,...,q. (30)
Two different standardi-bases are related bymBT not involving p,:
Ph = fa(p1, ..., Pg-1) a=1..,qg—1 (31)

the corresponding Jacobian matrix is orthogonap@t.

2.8. The canonical equation

Let us now look at the boundary conditions from a different point of view: the set

{p1,..., pqy} Will be viewed as a set ofveighted indeterminateswith integer weights
di, ..., d, satisfying the conventions
di>dry>...dy=2 (32)

and the boundary conditions expressed in (26) will be considered as a set of equations in
which P,,(p) and A(p) are thought of as unknown polynomial functions mf satisfying

the conditions listed under items P1, P2 and in (27). The positivity conditions specified in
(28) and (30) will be treated as initial conditions. With the above meaning for the symbols,
(26) will be called thecanonical equation

The solutions(P(p), A(p)) of the canonical equation satisfying the initial conditions
specified in (28) and (30) will be calledllowable solutionsand the corresponding®
matrices,allowable P matrices

A solution of the canonical equation will be said to beeducible if A(p) is an
irreducible (real) polynomial antully active if A(p) = constantx det?(p).

Two allowable P matrices will be said to be equivalent if a-homogeneous
transformation exists on the indeterminajes. . ., p,—1 such that (15) is satisfied.

The aIIowabIef’-matricesﬁ(p)|pq:1 have been shown to be positive semi-definite only
in a compactg — 1)-dimensional semialgebraic variety of the sp&fe* spanned by the
variablesps, ..., p,—1, containing the poinp©.

All the P-matrices associated to the differewss of any ccLG with no fixed points
are necessarily equivalent to an allowatitematrix. At present we do not know if the
converse holds also true, i.e. if eveajlowable P-matrix is generated by acLG with no
fixed points.

The allowable solutions of the canonical equationsdag 4 have been determined in
I and Il. For each choice of the degregf, da, ..., d,}, only a finite or null number of
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non-equivalent solutions has been found, showing the existensel@ftion ruledor the
degrees of thecLGs The solutions can be organizedtowers the degrees of the elements
of the same tower can be written in the forin = sd[ff’), a=1,...,9 —1, wheres is an
integer scale parameter. A solution of the canonical equation corresponding tb will

be said afundamentakolution.

Exploiting the fact that all thdinite coregular linear groups have been classified in the
mathematical literature and the associategs have been determined [48], in the following
sections we shall determine tiematrices of all the finiteeLgs with two-, three- [38] and
four-dimensional [39] orbit spaces, and we shall check that they can all be found among
the allowable solutions of the canonical equation listed in | and II.

3. Irreducible reflection groups with 2, 3 and 4 basic invariants

Finite groups generated by reflections exhaust the cladmitd cLGs. The explicit form
of the elements of at least oneB is known for all these groups [27-32]. Thus, the
correspondingP (p) matrices can be computed, as well as the complete faetops of
det?P (p) and the vector fields® (p) appearing in (24).

In general, themiBs proposed in the literature do not correspondAidases, so the
comparison with the results reported in | and Il is not immediate. The easiest way to
determine the form of aBT leading to anA-basis is through the following condition on
the Jacobian matri¥,,(p) of the transformation:

q
I ) =Y Jaa () =0 a=12..¢-D. (33
1

When theA-basis is not unique, (33) is not sufficient to determine all the free parameters
involved in the definition of thewieT. The residual free parameters can, however, be
determined by requiring that the parametric expressionPf’) in a generalA-basis
coincides with an allowable®-matrix listed in | or Il. To shorten our formulae and to
make easier the comparison, we shall define

p=(p1, ..., pg-1, D for p=(p1,...,pq) (34)

X=(x1,...,x,,0 for x=(x1,...,x,) (35)

Rab:ﬁab/dadb a,bzl,...,q (36)

Sox(x) = Zix;’+l_k for x=(x1,...,x,). (37)
1

3.1. IrreducibleccLGswith two basic invariants

The irreducibleccLGs with two-dimensional orbit spaces are classified in the mathematical
literature according to the followintypes A,, B2, G, and I,(m). The typeG, and I,(6)
groups have the same invariants, so we shall not discuss separately the group @$.type

3.2. TypeA;

The group acts on the plang+ y,+y3 = 0 of R® by permutations. Therefore the group and
its invariants can be obtained from the reduction of the gr&ymcting ony = (y1, y2, y3)
by permutations of the coordinates.
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A miB for S; is yielded by{f31(y), f3.2(y), fa3(y)}, where f3, is defined in (37).
The reduction of the linear groufs can be obtained by means of an orthogonal basis
transformation inR3, induced by the matrix

V3 -3 0
1
A=gl 11 2 (38)
V2 V2 2

The elements of the linear group of typ® are obtained as the principal minors built
with the first two rows and columns of the matricégA~*, g € S3 and, after setting, for
X =X1,...,Xn),

Pa(x) = pa(AT5) (39)
andx = (x1, x2), aMiB for A, is yielded by{pi(x), p2(x)} or, explicitly,

p1(x) = xo (3xf - x%) /N6 p2(x) = xf + x% . (40)

The unique element of the associated reduBeuhatrix is easily calculated to be

Pia(p) = 3p3/2 (41)
and after the followingvisT:

pi=~6p1 (42)
one obtains, fop, = 1, the allowableﬁ(p) matrix determined in | foy = 2 andd; = 3:

Ry (p)=1. (43)

3.3. TypeB,

The group acts o = (x1, x2) by permutations and sign changes of the coordinates. A
MIB can be chosen as follows:

pi) =xi+x3  pax) =%+ 3. (44)
The unique essential element of the associdteniatrix turns out to be the following:

P11(p) = 8p2(3p1 — p) (45)
and after the followingviBT:

p1=4p1—3p} (46)
one obtains, fop, = 1, the allowableﬁ(p) matrix determined in | foy = 2 andd; = 4:

Ry (p)=1. (47)
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3.4. Typel,(m), m > 3

The groups of typd,(m), m > 3, are the dihedral groupB,,, defined as the groups of
orthogonal transformations @2 which preserve a regulan-sided polygon centred at the
origin. After setting

z=x1+1ix2 (48)
amiB of D, is yielded, for instance, by the invarianggx) = {p1(x), p2(x)}, with
pix) =MR"  pax) = |z =2 +xZ. (49)
The unique essential element of the associdtematrix turns out to be the following:
Pu(p) =dZpy . (50)

A comparison with | shows thdtp} is a standardi-basis.

3.5. TypeAs

The group acts on the plang + y, + y3 + y4 = 0 of R* by permutations. Therefore
the group and its invariants can be obtained from the reduction of the gtpugrting on
y = (y1, y2, ¥3, y4) by permutations of the coordinates.

A MIB for Sy is yielded by{ f1(y), ..., fa(y)}, wheref; is defined in (37). The reduction
of the linear groupS,; can be obtained by means of an orthogonal basis transformation in
R4, induced by the matrix

3W2 -3/2 0 0

1 \fG «/6 —2«/6 0
A== ) (51)
61 v3 v3 V3 -3/3

3 3 3 3

The elements of the group of type; are obtained as the principal minors built with the first
three rows and columns of the matricégA~1, g € S4 and, after setting = (x1, x2, x3),
aMiB is yielded by{pi(x), p2(x), p3(x)}, with p,(x) defined in (39); explicitly:

p1(x) = (fo + 12xfx§ + 6x§1 + 12«/§xfx2x3 — 4«[2)63)63 + foxgz, + 6x§x§ + 7x§)/12
p2(x) = (3«/§xfx2 — \/éxg + 3)(]2_)63 + 3x§x3 — 2x§)/2\/§ (52)
p3(x) = xf + x% +x§.
The essential elements of the associafggh)-matrix turn out to be the following:
Pri(p) = 2(18p1ps + 2p5 — 3p3) /3
Pyo(p) = Tpaps (53)
Poa(p) = 9(4p1 — p3)/4
and after the followingviBT:
Pi=12p1—5p5  p)=2v3p, (54)
one obtains, fop; = 1, the matrixR of class Ill.1 ¢z = 1), reported in I:
Ry(p) = —p'1+py°+2
Rix(P) = 2p> (55)
Ryy(p') = py+2.
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3.6. TypeBs

The group acts or = (x3, x2, x3) by permutations and sign changes of the coordinates. A
MIB can be chosen as follows:

p1(x) = x2 + x5 + x5 p2(x) = x7 + x5 + x5 pa(x) = x? + x5 + x5. (56)
The essential elements of the associaf’e{gdr)-matrix turn out to be the following:

P11(p) = 30p1p2 + 30p1p5 — 30p2p3 + 6p3

Pra(p) = 32p1ps + 12p2 — 24p, p2 + 4p} (57)

Pro(p) = 16p1.
and after the followingviBT:

pi = 324p; — 432pyps + 124p3 py = 18p, — 10p3 (58)
one obtains, fop; = 1, the matrixR of class Ill.2 (» = 1) reported in I

A ;o ’ ’2 /
R11(p") = —pipy — 4p1 + 8p,” — 16p; + 64

Ry, () = —2p + py’ + 12p) (59)
Ry(p) = py +4p5+ 16.

3.7. TypeD3

The group acts on = (x1, x2, x3) by permutations and by changes of an even number of
signs of the coordinates. KB can be chosen as follows:

p1=x7 4+ x5+ x5 D2 = X1X2X3 p3=x24 x5+ x5. (60)
The essential elements of the associafethatrix turn out to be the following:

Pyy(p) = 24p1ps + 48p5 — 8p3
Pio(p) = 4p2ps (61)
Pyo(p) = (—p1+ p3)/2
and, after the followingvis transformation:
py=4p3—6p1  py=6V3p, (62)

one obtains, fop; = 1, the matrixR of class Ill.1 ¢z = 1) reported in I. The orbit spaces
of the linear groupsis and D3 turn out to be isomorphic.

3.8. TypeH3

The group is the symmetry group of the icosahedro®in
Let us denote by the golden ratio:

T =(1++5)/2. (63)
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Then, according to [31], ans for the group can be chosen as follows:

p1x) = A+t [A+ TG0 + x3% + x3°) + 4502 (xS + xZxf + x3xD)
+210r4(xi‘x§3 + xgxg’ + xgx?) + 2101'6(x£’x§ + xg’x§ + xgxf)

+4508(x8x2 4 x8x3 + xgxf)]

64
po(x) = (1+1H73 [1+ 0 (xS + x§ + x§) + 1502(x2x5 + x3x5 + xx3) (64
+ 15c%(xfx3 + xg'xg + +xfx§)]
p3(x) = xf +x§ +x§.
The essential elements of the associafethatrix turn out to be the following:
P11(p) = 192p1p2ps + 336p1p3/5+ 16p3/9 — 11363 p3 /15— 15968,p5/75
+814123/1125 (65)
Pra(p) = 336p1p3/5 + 184p3pa/3 — 404p2p/3 + 265603 /75
Poa(p) = 18p1 — 12p>p3 + 174p3/25
and, after the followinguiBT:
ph = (506251 — 123 75Q2p5 + 39 28%3)/2 Py = 225p; — 93p3 (66)

one obtains, fop; = 1, the matrixR of class IIl.3¢z = 1) reported in I

Ryy(p)) = 1152 12p, — 168p), — 4p’ p) + 44py° + pj°
Ri,(p') = —6p}, + 60p}, + 5p)’ (67)
R)y(p') = 96+ p} + 14p}.

3.9. TypeA,

The group acts on the plang + y> + y3 + y4 + ys = 0 of R® by permutations. Therefore
the group and its invariants can be obtained from the reduction of the dgiuating on
y = (y1, ..., ys) by permutations of the coordinates.

A MiB for Ss is yielded by {f51(y),..., fs5(y)}, where f5, is defined in (37).
The reduction of the linear groufs can be obtained by means of an orthogonal basis
transformation inR%, induced by the matrix

1 1
% —5 O 0 0
L L -2 0 0

INCEEN: V6

1 1 1 3
A=135 25 25 “25 O | (68)
111 1 4
25 25 25 2.5 25
1 1 1 1 1
V5 W5 V5 V5 V5
The elements of the group of type, are obtained as the principal minors built with the first
four rows and columns of the matriceg A, ¢ € S5 and, after setting = (x1, ..., x4),




208 G Sartori and G Valente

aMiB is yielded by{pi(x), ... pa(x)}, wherep,(x) is defined in (39); explicitly,
pi(x) = 18007 (750v/6x7x2 + 500v/6xZx3 — 250v/6x35 + 750v/3x7x3 + 150003 x7x3x3
+750V/3x5x3 + 750v/6 xZx2x3 — 250v/6 x3x3 + 250v/3 x2x3 4 250v/3 x3x3
—500v/3 x5 + 450v/5 x3 x4 + 900V5 x2x2x4 + 45075 x5 x4
+900\/Exfx2x3x4 — 300@)65’)63)64 + 450\/'3xfx§x4 + 450\/§x§x§x4
+525/5 x§x4 + 450V/6 xfxgxf — 150V6 xg’xf + 450\/§xfx3x§
+450V/3 x3x3x2 — 300v/3x3x2 + 90v/5 x2x3 + 90V/5 x3x390v/5 x2x3
—459/5x3) (69)
pa(x) = 60 1(30x] + 60x7x5 + 30x3 + 60v/2 x2x2x3 — 2072 x3x3 + 30022 + 30x2x2
—i—35x§1 + 12«/@x%x2x4 - 4x/§)x§x4 +121/5 XfX3X4 + 121\/§x22x3x4
—81v/5x3xq + +18¢2x2 + 18c2xZ + 18¢3xZ + 3%5)
p3(x) = 30’1(15\/6)6%)62 — 5v6x3 + 15v/3x%x3 + 15v/3x3x3 — 10v/3x3 + 9v5x%xy
+9v5x%x4 + 95 x3xg — 9«/5)@%)
pa(x) = x2 + x5 + x5 + x5
The essential elements of the associafégh)-matrix turn out to be the following:
Pui(p) = 5(12p% + 128p1 p3 + 20p,p5 — 5p) /48
P1o(p) = (46p2ps + 84p1ps — 35p3p?) /6
P13(p) = (40p3 + 66p2pa — 15p3) /8
Pao(p) = 2(16p3 + 90p2ps — 15p3) /15
Pys(p) = 12(5p1 — papa) /5
Py(p) =9 (5p2— p3) /5
and, after the followingviBT:
pi = 30v15(4p1 — 3p3pa) ph = 3(20p2 — 7p3) ph = 6v15p; (71)
one obtains, fop; = 1, the matrixR of classEy(s = 1), reported in Il
Ryu(5) = —4pyps+3py° — 27p), + 182p;" +9)
R15(p") = —6p + p3(5p5 + 54
Ris(5) = 2@3py+ ph?)
Rop(5) = 3p'xz + 2(4p3” + 27)
Rys(p") = py + 12pg
Ry(P) = pp +9.

(70)

(72)

3.10. TypeB,

The group acts om = (x1, x2, x3, Xx4) by permutations and sign changes of the coordinates.
A miB can be chosen as follows:

4
{pa @)=y ix,-m“} : (73)
1

1<a<4
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In this basis the essential elements of #hep) matrix turn out to be the following:

Pui(p) = 4(28p1p2 + 14p2p5 + 42p1pspa — 21p3pa — 28papaps + 14p1pi + Tpips
—14p2p; + Tpap; — ps) /3

P1o(p) = 16p3 + 36p1p3 — 6p3 + 36p1p; — 18p3ps — 32p2p3 + 18paps — 2§

P13(p) = 4(20p2ps + 30p1ps — 15p5pa — 20p2p5 + 10papi — p3) /3 (74)

Paa(p) = 3(20p2p3 + 30p1pa — 15p5pa — 20pap + 10paps — p3) /2

Pr(p) = 24p,

P33(p) = 16p;

and after the followingvisT:
pi = 11059 — 552963 — 138 240, ps + 98 4963 p; — 15 0660
Py = 2304p; — 2592p3ps + 6123 (75)
Py = 48ps — 21pj

one obtains, fop, = 1, the matrixR of class Egs = 1), reported in Il

Ri1(5') = 2p(py — 54) + 15p}” + 216p)p}y + 324(Aps” + 18p} + 81)
Rip(5') = 6pypy — pb” + 18ph(p} + 12) + 1620p}

Ri3(p') = 6p) — py(ps — 27) + 54p;

Ryy(5') = 4[3py — ph(ps+9) + 27(py” — 2p}y+ 27)]

Rys(p') = p; — 3ph — 6p° + 108p}

Ry3(p) = py — 12p3 + 81.

(76)

3.11. TypeD,

The group acts or = (x1, x2, x3, x4) by permutations and by changes of an even number
of signs of the coordinates. KB can be chosen as follows:

4 4 4 4
=Y x  p@=Y x  p)=[[x  pax)=)_ xZ.  (77)
1 1 i=1 1

The essential elements of the associafethatrix turn out to be the following:

P1(p) = 6(5p1p2 — 30p3pa+ 5p1pi — 5paps + p3)
Pra(p) = 4(3p5 — 24p5 + 8p1ps — 6p2pi + pl)
P13(p) = 6p2ps

Pao(p) = 16p;

Pas(p) = 4papa

Py(p) = (2p1 — 3p2pa+ p3) /6

and, after the followinguisT:

(78)

py =12 (12p1 — 15popa + 4p2) Dy = 48\/§p3 p3=6 (—2p2 + pi) (79)
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one obtains, fop, = 1, the matrixR of class EZs = 1), reported in Il
Ry(F) = —4py +5p5° +5p5° +12  Rip(5) = 2p5(ps +3)

Ris(P) = py’ — py(ps—6)  Ryy(p)) = py+3ps+6 (80)
Ris(p') = 3p} Ry(p') = p1 —3p3 + 6.

3.12. TypeF,

The group is the group generated by all the reflection®inwhich leave invariant the
hyperplanes;; — x3 =0, x3— x4 =0, x4 =0 andx; —x, —x3 — x4 = 0.
Let us define, for = 2, 6, 8, 12:

k
Sp(x) = Z l_x{‘
1

rj2—1
I,(x) = (8 - 2r_l)Sr + Z j (;]) SZ_/Sr—Z_f
1

= Z [ 4+x)" 4+ (g —x)7. (81)

1<i<j<4
Then, according to Metha, )iB for the group can be defined to be the following:

p1(x) = I12(x) p2(x) = Ig(x) p3(x) = Ig(x) pa(x) = I2(x)/6 (82)

or, explicitly,

p1(x) = 924(x§’ + x26 + xg + )cf?)2 + 99(X)ci1 + xg + xg + xi)(x? + xg + xg + xf) + 132(xf
x5 4+ x5+ x3) (1% + x3° + 130 + 130 — 204Qx]? 4 x3% 4 x3% + x32)

p2(x) = 70(xi1 + xg + x§ + xﬁ)z + 56(x% + x% + x% + xf) ()ci3 + xg’ + xg + xg) — 120()(13
+x5 + x5+ x5) (83)

pa(x) = 30(x% + x5 + x5 + xD)(x] + x5 + x5 + x7) — 24(x2 + x5 + x5 + x5)

pa(x) :xf+x§+x§+x§.

The essential elements of the associabégh) matrix turn out to be the following:

Pyy(p) = (187113 p3 + 1015 74( pops — 10178 01®2p3 ps — 625 68Q1 p3ps
+12 4963 p5 — 16750802 p3 — 5264 82, paps + 24 793 56( p3
+14 4104493 p; — 254481 48@,p,) + 470719 26@3p5 — 1709728 560
p;') /810
Pi2(p) = 4(1197Q»1 ps — 610p3 + 49 977p3 pa — 17505, p3p2 + 428 2201 p
+110055p; — 445527, p; + 9531 63Q3p§ — 32435 64p3) /40584)
Pra(p) = 4 (243p + 2259, paps + 15480y p2 — 557202 p2 — 129 24Q, pl
+278 25Q3p; — 847 26Q5) /45
Pya(p) = 16(21p2ps + 84p1pa — 28p5pa — 840p2p5 + 1890psp; — 6120p]) /3
Py3(p) = 32(18py + 7p§ — 63p2p; + 273pspy — 1134p3) /9
Py3(p) = 72(=12+ popa+ 4p3p3)
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and, after the followinguiBT:

py = 96v/6(288p1 — 77p3 — 3762p,p5 + 88323p3 — 295115) /5
p» = 108(16p, — 56p3pa + 255p3) /5 (85)
Py = 66 (2ps — 15pf{)

one obtains, fop, = 1, the matrixR of class E4(s = 1), reported in II:

Ry (P) = —6[12p; ps — 21ps° — py(11py” — 864) — 36(17py” + 972)]
Riy(p') = —6[12p; — py(21p}, + pi’ + 756)]

Riy(7) = py’ + 180p) + 60p}

Ryy(p') = 6(9p} + Tps” + 972

Ry3(p') = pi + 180p3

Ri(p') = 5p; + 324.

(86)

3.13. TypeH,

The group is defined as the group generated by all the reflectidvrhich leave invariant
the hyperplanesz = 0, x4 = 0, 77 1x, — tx3 — x4 = 0 andt~x; — Tx, — x4 = 0, wherer
is defined in (63).

For j, k, 1, m in the set{1, 2, 3, 4}, let us define the following symbols:

-1 for j=k

ik = 87
ik 1 otherwise (87)

and the following expressions:
E(m, j,k, 15 X) = TXNmj + T Xtk + Xt 5 (88)

xGrk, L x) = £0, ok, ;)2 +EG, j, k, I )+ &k, j, k, I )™ 4+ &, j, k, 1 x)>

(89)
4 2n
W(j, n; x) = (anijk) : (90)
1
4 4
L) =3 @0% + 32 Wik ) + x(1.2,3,m52) + x(L 3,4, 7; %)
1 0
+x(L,4,2,n;x)+ x(2,4,3,n;x). (92)

Then, according to Metha, )iB for H, can be chosen in the following way:

4
p1(x) = Is0(x) p2(x) = Iro(x) p3(x) = I12(x) palx) = Zix,-z' (92)
1



212 G Sartori and G Valente

The essential elements of the associafethatrix turn out to be the following:

P11(p) = 53911, p3 pa/ 7616+ 7 051 7851 p2 p2 /56 + 4 821 334 2452 p3 p3 /25 432
12186 873 325 pops /34 — 645826 368 703 p;/150 528
—116309076 67255 p3ps/23936— 211651127 02p; p3pS/2
—21238646 708813625 p;/18 496— 283 066 493 617 380 914 p;'/9856
—2811241304 150 172 075 p3p3>/544+ 2218 140 033 302 25 p3*
47676790020 731 375 739 35y, /224
—15228773 425368084 479 624p1°/136
1253639 342 346 876 415 408 375p3°/8
—8927280781972 196 041680 013 }3%/4

P1o(p) = 26 741p3/61 740+ 2 357 459, p2 p2 /56 + 1 473 90Q p3ps + 482 71450532 pi/22
—1869 793 842 2443 pS /7056 — 7 474 081 897 81p, p3 ps /44
4327790212 409, p; + 66 300 758 108 151 128 p3°/308 (93)
—34964 650402339 275 p;* + 128 303 960 304 363 056 7p5p.°
—993168 612 785995 074 523 5641

Pi3(p) = 429 9752/3179+ 4 236 7913 p2/168+ 2 490 103 989, p3pi /187
+92563 800 p; — 7157 961 621 1355 p5 /88 — 330 008 206 170 825 p1°/34
436082213228 297 5 ps* — 271058 613 666 147 798 75

Poy(p) = 2657 6443 p,/138 915+ 24 894 256, p3p/21+ 5074 562 5601 pi/819
—1343036 354 0245 p; /441 — 644 361 278 88P,p;
+49357 102 179 756 8QQ p+3/21 — 4 855838 749 013 355 171 2p§F /273

Po3(p) = 1088(p1/13+ 13223622 p2/21 — 80135 16(,p3 + 296 137 692 08P3p2
—29473265236173604°/13

Pa3(p) = 5040p4(7ps — 18 224p3pi + 167 747 16(3%) /17

and, after the followinguisT:

pi = 98415000576p;/1001— 108 5553 p3/539— 11535372, p;/187
+17 469633 9283p;/77 — 1724 135397 013 808§°/1001)

ph = 2187 000(—6p,/187+ 1307p3p,/11— 908 706;°)

ps = 1620(—p3/7 + 1130pF)

one obtains, fop, = 1, the matrixR of class E5(s = 1) reported in If:

(94)

Rj,(p') = —36p3(—25380+ 19p3) + 90p1(—1 166 400+ 12p, + 1080p3 + p2)
— p2(—75582 720 000- 342 921 603 — 6 480p2 + 29p3)
+45(918 330 048 000 009 906 992 640 00Ps + 1 102 248 00p?2
—33912Q)3 + 209p3)

T In 11, the sign of the monomiapy p3 in the expression oR}; is wrong and should be changed.
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Roy(p') = —486p3 + 360p1(540+ p3) — 9pa(—34 992 000~ 3 240p3 + 19p3)
— p3(—89 754 480 000- 28 431 00p3 — 45 36Q2 + p3) (95)
Ri5(p)) = 2160p1 + p? — 1980p(—1080+ p3) — 55(—4860+ p3) p3
Rjy(p") = 212576 400 006- 540p; — 45927 00p3 + 218 70Q2 — 19p3
—324p,(2025+ p3)
Rba(p') = p1 — 810p, — 495—2700+ p3)p3
Ria(p') = 11py — 6 750—1296+ p3) .

4. Reducible reflection groups with 2, 3 and 4 basic invariants

In this section we shall state the rules for building thematrices of a reducible coregular
linear group G, in a standardA-basis, starting from theP-matrices associated to its
irreducible components. This will allow us, in particular, to derive the explicit form of
the P-matrices of all the reducible reflection groups whose orbit spaces have dimensions
< 4 and state which of the allowabie-matrices determined in | and Il are related to these
groups.

Let G® and G be irreduciblecLGs, acting, respectively, ifiR™ andR"2. Then, the
set of matrices

G ={gP ®g?} wegm (96)
a=12

forms a coregular linear group, acting on the vecioess x P @x @, x € R = R1@R"™.
If the groupsG®@, « = 1, 2 are generated by reflectior,is a reflection group isomorphic
to G1 ® Go.

Let us denote byp™ (x®), i = 1,...,q, x© € R the elements of a standard

MIB relative toG®, o = 1,2 and by{d®}, P@(p®) the associated set of degrees and

P-matrix. We shall assume” > 4.
A set of basic polynomial invariants @ is yielded by

PP ) = {pPaD), pPx?)) (97)
and the associatei-matrix has the following form:
pe (p(+)) — ﬁ(l)(p(l)) ® ﬁ(Z)(p(Z)) . (98)

If {p®} is a standardi-basis relative taG*, A® (p'®) is the complete active factor
of detP @ (p@) andw® is its weight, then

A(+)(p(+)) — A(l)(p(l))A(Z)(p(Z)) (99)

is the complete active factor of dBf?); it satisfies the following relations:

q1+q2
YL P HAD D) = AP AP D) a=1.. qa+4q (100)
1

where

A =2V gpr@=(,...,0207,0,...,0 2w?). (101)
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Therefore, a standard-basis{p} of G can be obtained fronip*} by means of a basis
transformationp = f(p™®), with f(p™) defined, for instance, by the following relations:

Pk=17,~(;2)) k=1,...,q1+q2—2

Pgrtgr-1 = bgrig-1(w®p —w® p?) (102)
1 2

Par+q = pt(h) + p((p)

in (102), the seti(1), ..., i(q1+q¢2—2)} is a permutation of the indicd§, ..., g1+g2—2},
such that the degrees of the invariaptsare non increasing functions &f The parameters
by are arbitrary and will be chosen so that tAematrices can be easily compared with the
results reported in | and Il

The P-matrix associated to theis {p} is determined by the following relation (see
equation (15)):

P(p) = J(pD) PO JT (pD) (103)
pP=f"1p)
where J (p™) denotes the Jacobian matrix
Afa(p™)
Jah(p(Jr)) = % a,b:l,...,q1+q2. (104)
Py

In the aim of determining thé®-matrices of all the reducible reflection groups whose
orbit spaces have dimensions 3 and 4, let us now specialize the construction we have
described to the caseg = 2, g2 = 1,2 and to each of the different cases one can get
starting fromg: = 3, ¢2 = 1. We shall denote by the weight of the complete active
factor A(p) of detP(p):

w=w®=w®4+w?, (105)

Below, for each of the different reducible groups that can be obtained in this way, we
shall list the values of the degrees, the explicit form of the maRi®, the MmiBT leading
to a standardd-basis and the transformed form of the matRxp), evaluated ap, = 1,
to be compared with the results of | and .

41. Casg;p =2, go=1
dh=dY=m+1  d=dP =2

m e N, (106)
d2=d£l)=2 w=2d£l)+2=2m_|-4
RS(I_JI)(p(+)) — pgl)m R;w’;)(pH-)) =0 a= 1’ 2
RE G =p"  REG) =p (107)
R (p) = p& RE (p) = p@
p1=@+m)"2pP p2=—ps’ +(m+1pP p3=ps’ + p? (108)

Rui(p) = [+ m)ps — p2]" R22(p) = (14 m)ps + mpa

(109)
Ri2(p) = —p1 R.3(p) = pa a=1273

which, for p3 = 1, is the class IIR-matrix reported in II.
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4.2. Casegl =2, g2 = 2
di=dP =j1+1  dz=d’ =2

b=d? = 41 do=d? =2 Jj1, j2 € N, (110)
w=wY4+w? =201+ j.+2) (111)
R (D) =pP*  RE GO =p®  RE (D) = pP

Ry (p™) = p¥ R (p™) = pP" R (D) = pP (112)
R (p™) =0 a=12 b=34

1=+ i2+2M2p"  ps=(2+Dp2— (r+Dpa

. (113)
=1+ 2+ 222pP?  pa=p 4 pP

R11(p) = (j1+ jo + 2)[—ps + (j1 + 1) pa] R12(p) =0
Ra2(p) = (j1+ j2 + 2[ps + (j2 + D) pa]2 Riz(p) =—(2+Dp1 (114)
R3(p) = (i + DG +D + (j1— j2)p3 Ro(p) =(j1+Dp2

which, for p3 = 1, is the class A8, j») R-matrix reported in Il. Forj; = 1 the group
G"Y ~ 7, ® Z, is reducible.
43. Caseg1 =3, =1
d=d  dz=d’
o T w=w? 12 (115)
dy = dS” dy = d?

RO (p)p = R“’(p“)) a,b=1,23

RP(pM)y = a=1273 (116)
RO (pas = Rﬁ)(p@)) 7
p1=bipy? p3= bs(pél) —w®p?/2) pp = byps” pa=ps’ + pf? (117)

The matrixR™® can be chosen from three different classes, denoted as IIl.1, 111.2, 111.3
in Il and corresponding, respectively, to the groups of type(or D3), B3 and Hs.
Choosing asG" a type Az group one obtains:

di=4 d3=dy=2

118
do=3 w? =12 (118)
— 49, PP —6p?
l;;z &) re <1) p (119)
p2=—1""p; Pa +p{
Ru1(p) = 7[p3 — p1(ps + 6ps) + 2(ps + 6p4)°]
2
R22(p) = 7[p1+ 2(p3 + 6pa)°] (120)

R12(p) = 14p2(p3 + 6pa)
Ri3(p) = p1 R23(p) = p2 R33(p) = —5p3 + 6pa4
which, for p4 = 1, is the class B4(= 1) R-matrix reported in Il.
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Choosing asGV a type Bs group one obtains:
d, =6 d3=dy=2

dy=4 w® =18 (121)

p1=10p" pa=py — 9y (122)
— 107 pP _ @ )

D2 = 12 pP4=p3 +pq

R11(p) = 10{ p1[ po—4(p3+9p4)*]+8(p3s + 9pa)[ P + 2p2(ps + 9pa)? + 8(ps + 9pa)*]}
Ri2(p) = 10{2p1(ps + 9pa) — p2[p2 — 12(p3 + 9pa)?]}

(123)
Ra2(p) = 10{p1 — 4(p3 + 9pa) [ p2 — 4(p3 + 9p4)*]}
Ri3(p) = p1 Ros(p) = p2 R33(p) = —8p3 + 9pa
which, for p4 = 1, is the class C6(1R-matrix reported in II.
Choosing asG'V a type Hs group one obtains:
dy =10 dy=d, =2
' T (124)
dr =6 w® =30
pr=16p;"  p3=p{’ —15p?
3 (1 o, ® (125)
p2=—16"p, pa=p3 +pf
Ru1(p) = 16{4p1(ps + 15p4) [p2 — 3(ps + 15p4)®] — [ p2 — 48(ps + 15p4)°] (126)

x [P3 + 4p2(ps + 15pa)* + +24(ps + 15p4)°]}
Ri2(p) = 16(p3 + 15j1p4) [—5p5 + 6p1(ps + 15ps) + 60p2(ps + 15p4)°]
Roo(p) = 16[ p1 — 14p2(ps + 15pa)® + 96(p3 + 15p4)°]
Ris(p) = p1 Ra3(p) = p2 R33(p) = —14p3 + 15ps (127)
which, for p4 = 1, is the class D4{) R-matrix reported in II.

5. Concluding remarks on the mathematical results

Starting from explicit forms for the basic polynomial invariants of the finite coregular
groups, that can be found in the mathematical literature, we have computed the associated
13(p) matrices. The equalities and inequalities, defining the orbit spaces of the groups as
semi-algebraic sub-varieties &, can be easily obtained as semi-positivity conditions on
these matrices.

The computation has been limited to the coregular groups with less than five basic
polynomial invariants, since the main aim of our work was to test the completeness of the
allowable solutions of the canonical equation listed in | and Il and to find the corresponding
generating groups. The test has been positive: all Rhmatrices generated by finite
coregular groups appear in the lists of allowaBlenatrices reported in | and II. In particular,

(i) For ¢ = 2 all the allowableP-matrices are generated by coreguiiaite groups; the
caseq = 2 is exceptional, since the canonical equation puts no restrictions on the
allowable P-matrices. On the contrary, far = 3, 4, only the fundamental elements
(scale parametes = 1) of some towers of allowablé-matrices are generated by
coregularfinite groups; in this case, the existence of towers of solutions of the canonical
equation probably has no group-theoretical meaning, but is only an artefact related to an
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invariance of the canonical equation under scaling of the degrees of the basic polynomial
invariants. By now, however, we cannot exclude that the higher elements in the towers
are generated by non-finite groups.

(i) For ¢ = 2, 3,4 all the fully active allowable solutions of the canonical equation are
generated byfinite coregular linear groups; thareducible ones are associated to
irreducible linear groups.

As for the fundamental allowabl@-matrices for which we have not found a finite
coregular generating group, various, more or less obvious, interpretations are possible; they
might be generated by

() non-finite compact coregular groups,

(ii) non-coregular groups,

(iii) non-minimal integrity bases of finite or non-finite compact coregular groups,
(iv) direct sums of non-fundamental allowabfematrices.

This is probably an incomplete list.

We shall try to clarify this point in two forthcoming papers. The correspondence between
the classification of the allowabl@-matrices determined in | and Il and the generating finite
reflection groups with less than five basic polynomial invariants is summarized in tables 1—
4, where by a group of typé (1) we mean the groufZ.®Z,, (Z, = {£1}). The case
g = 1 is trivial, as there is only one allowable-matrix generated by the groug,. For
q = 2, for each choice of the degrek there is only one equivalence class of allowable
P-matrices, which are generated by at least one finite coregular linear group.=F8r all
the fundamental elements in each tower of (classes of) allowable solutions are generated by
at least one finite coregular group, but for tAematrices of class I. Foj = 4, the number
of (classes of) reducible allowable solutions which are not generated by at least one finite
coregular group is much higher.

Table 1. Correspondence between classes of allowable solutions of the canonical equation
(labelled by the degreé;) and finite coregular generating groups, foe= 2.

Group Zx®Zx Az, 1x(3) Bz, (4 (5 Go L(6) Ixm)
dy 2 3 4 5 6 m>6

Table 2. Correspondence between classes of fundamental allowable solutions of the canonical
equation, degrees of the basic invariants and finite coregular generating groupss far

Group I(m+1)®Z> A3, D3 B3 Hs3
(d1,d2) (m+1,2) 4,3) (6,4 (10, 6)
Class Ilm), meN, lll.1 1.2 1.3

Table 3. Correspondence between classes of irreducible fundamental allowable solutions of the
canonical equation, degrees of the basic invariants and finite coregular irreducible generating
groups, forg = 4.

GI’OUp Ag Dy By Fy Hy
(di,d2,d3) (5,43 (6,44 (864 (1286 (30,2012
Class E1l E2 E3 E4 E5
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Table 4. Correspondence between classes of reducible fundamental allowable solutions of the
canonical equation, degrees of the basic invariants and finite coregular reducible generating
groups, forg = 4.

Group L1+ DRL(j2+1) A3®Z3, D3®Z; B3®Zp; H3®Z»
(d1,d2.d3)  ((j1+1D.(2+1).2) 4.3,2 (6,42 (10,6,2
Class A8j1, j2), j1 > j2€ N, B4(1) C6(1) D4(1)

6. Physical applications. An example

The P matrix approach to the study of orbit spaces has been, or can be used, in various
physical contexts, where the study of covariant functions is important, as already stressed
in the introduction. Typical examples are the determination of patterns of spontaneous
symmetry and/or supersymmetry breaking [20, 7] in gauge-field theories of elementary
particles, the analysis of phase spaces and structural phase transitions in the framework of
Landau’s theory [49, 50] and in cosmology (phase transitions in the hot Universe [51]).
Applications can be found in covariant bifurcation theory [52] or in crystal field theory and
in most areas of solid state theory where use is made of symmetry adapted functions.
Most of the groups dealt with in the preceding sections are crystallographic groups, they
are therefore symmetry groups of regular polyhedra in two, three or four dimensions and of
root diagrams of simple Lie algebras. In particulgrgn) denotes, in Coxeter’s notation,
the dihedral group denoted 6y, in the standard physical notation [49}(m) ® Z, denotes
D,,, while D3, B3z and H3 correspond, respectively, to the groufys O, andY,; F; is the
symmetry group of a regular solid iR* with 24 three-dimensional octahedral facé; is
the symmetry group of a regular solid Rf with 120 three-dimensional dodecahedral faces
or, dually, of a regular 600-sided solid with tetrahedral faces; the grdpsi4, B4 and
D, are strictly related to permutation groups or semi-direct products of permutation groups
and sign change groups, as explained in section 3.
Solid state physics is, therefore, a natural physical context where our results can be
exploited. As an example of the use of tAematrix approach to the analysis of properties of
an invariant function, and, in particular, of the determination of the location of its stationary
points and of its absolute minimum, in this section we shall study a six-degree expansion of
a Landau thermodynamic potenti@l(x; =, T'), which depends on the vector valued order
parameter = (x1, x2, x3), transforming according to the fundamental representation of the
group Oy,. At the end we shall restrict our results to Ba%i@nd determine its phase space
using an oversimplified expression for its free energy.

6.1. The orbit space of the group, and its stratification

In the Coxeter notations used in the preceding sections, the fundamental representation of
the groupO,, corresponds to the grouBs, for which anmis is specified in (56) and the
correspondingP-matrix in (57) and (13), withly = 6, do = 4, d3 = 2.

To describe the geometry of the imageof the orbit space 00, let us define the
following auxiliary polynomial functions op:

fi(p) = —p2+ p3 f2(p) = —p1+ p3
f3(p) = 3p2 — p3 fa(p) = 9p1 — p3 f5(p) = 2p2 — p3 (128)
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fe(p) = 4p1 — p3 f2(p) = p3 — 3papz2+ 2p1
fe(p) = —p3 + 9p2p3 — 8p1p3 — 21p5p5 + 36p1paps + 3p3 — 18p5 .

The shape and primary stratification®tan be immediately deduced from an inspection
of the condition

detP(p) = f1(p) fa(p) =0 (129)

the results obtained in this way are confirmed by a complete analysis of the positivity and
rank conditions on the matri® (p) defined in (57). The sectioR of the orbit space with

the planeps =consantt is plotted in figure 1, where the axes are labelled by the adimensional
variables

u = pz/ps v=pi/p;3. (130)

The determination of the isotropy type stratification&fthat is the determination of
the orbit types of the different primary strata, requires a sounder analysis: for a convenient
choice of the pointp in each stratum, one has first to find a solutios: (i, X2, x3) of the
following equations:

xf—l—xg—i—xg:ﬁle+x§+x§=ﬁ2xf+x§+x§=]33 (131)

0.8
0.6
0.4

0.2

0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. Stratification of the orbit space of the grod},. The numbers;, j =1,...5, label
the singular isotropy type strat; defined in table 5.

and then, to determine the isotropy subgroupogfat x, by selecting the transformations
of O, which leavex invariant.
A solution x of (131) for each stratum is easily found by noting that

detP (p(x)) = fr(p(x)) fa(p(x))
= 36xfx22x§(xf - x%)z(xg - x%)z(xg - x%)z. (132)
The results one obtains are reported in table 5.
1 The numbers(xy, X2, X3) are the non-negative solutions of the real equatﬁék arz¥ = 0, with ag =

(—P3 + 2p2ps — 2p1)/6 (= —¥3%3%2), ar = (p3 — p2)/2 (= X2%3 + X252 + ¥35%D), ap = p3 (= X2 + ¥2 + ¥2),
az =1.
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Table 5. Isotropy type strata of the orbit space of the 3-dimensional representation of the group

Oy,.

Strata Defining relations ifi®?  Typical points inR”
20={0n} p1=p2=p3=0 X1 =X2=x3=0
Y1={Ca} fi=f2=0<p3 x1=1 x2=x3=0
Y3={Cx%} fz=fa=0<ps3 Xp=X2=x3=1
Y2={Cx} fos=f6=0<ps3 X1=0 x2=x3=1
Z4={C;}  fs=0< f3 f7.p3 =1 X=x3=2
35 = {Cy)} fi=0<f1, f5, p3 X1=0, x2=1,x3=2
Zp={C1} 0< f7, fs p3 X1=1 X=2 x3=3

6.2. The absolute minimum of the potential. Phase transitions
Let us now build the potential
Gx;m,T)= é(p(x); 7, T) (133)

as the most general sixth ordéx, invariant polynomial function of the order parameters,
the coefficients:, A; and B; being functions of the pressureand the absolute temperature
T:

G(p;m,T) = Scps+ 2(Aop3 + A1p2) + L(Bop3 + Bipapz + Bapy) . (134)

In order to assure stability of the system, we shall require that, =, 7') is bounded
below. This occurs if and only if the coefficient @f in the asymptotic form oG for
p3 —> o0

Cas(ut, v) = % (Bo + Buu + Bav) (135)

is everywhere positive orE, i.e. iff its minimum in E is > 0. Since the equation
Cas(u, v) = constant defines straight lines in the planev) andS is inscribed in a triangle
with vertices at the points representing the stf@g}, i = 2, 3, 4 (see figure 1), one easily
realizes thatCaq(u, v) is bound to take on its absolute minimum at at least one of the
vertices. ThereforeG (p; =, T) is bounded below if and only if the following inequalities
are satisfied:

Cas(u, v)|(c,) = (4Bo + 2B1 + B2)/4 > 0

Cas(u, l))|{C3v} = (gBo + 331 + Bz)/g > 0 (136)

Cas(u, v)lic,,y = Bo+ B1+ By > 0.
A Being G(p; 7, T) a linear function of(py, p»), for fixed ps, the extremal points of
G(p; m, T) lie necessarily on the boundary 6f and can be determined [21] using, for
instance, the standard method of Lagrange multipliers. Denotingisby 0, A € Z° and
fa >0, A eI the algebraic relations defining the isotropy strathiy the conditions
one obtains can be written in the following form:
G fa

= )\Ai

3Pa 3PA

a=12,...,q
AeT®

fa=0 Ae1®
fa>0 AeIP

where the)’s are Lagrange multipliers.

(137)



Orbit spaces of reflection groups 221

The determination of the absolute minimum and of its location(s) is made much easier
if one notes thaf;(p; m, T) necessarily takes on its absolute minimum in some point of
one of the stratd0,}, {C;,}, i = 2, 3, 41, like Cas(u, v) and for the same reasons.

By indexing these strata in the following way:

o = {0} Y1 = {Ca} Yo ={Cx} Y3 = {Cz} (138)
the relations determining the stationary points of the potential can be put in a very compact
form.

The relations defining the stra®., which can be read from table 5, allow us to express
p1 and p, in terms of p3, so that we can define

Gk(pg,; T, T):G(p;n, T)|Ek k=0...,3. (139)
Explicitly,

Go(0; 7, T) =0 (140)

A by p?

Gi(psi . T) = ps (o + XP2 4 23 p3>0 (141)

2 4 6

where

ar = Ao+ A1kt

e k=123 (142)

by = Bo+ Bik™t+ Bok™2

and, owing to (136)p; > 0. A
Now, it is trivial to realize that for < 0, each of the function&,(ps; 7, T), k =1,2,3
has a local minimum, which is unique and is locatethat= ps, where

(—ak + ,/a,f — 4bkc)
2by )
At p3 = psy, the functionék(pg; mw, T) takes on the value:

o 1
G, T) = 872 (ak —Jaz — 4bkc> (a,f — 8bic — ary/a? — 4bkc) k=12 3.
p

(144)

For ¢ > 0, the existence of local minima fafik(pg; 7, T) depends on the values taken
on by Ag and A;. .

To determine the absolute minimum 6f(p; 7, T) and the phase space, one has to
compare the values taken on by the functiaf8"(z, T).

To be specific, let us restrict our results to the case @hat, r, T') is an expansion in
the order parameters of the free-energy of BaTiBollowing Kim [53], we shall consider
the following two possibilities, in which a possible dependence on the pressisrignored
and CcGs units are used:

c=T74T — 110 x 10°°
By=0

Ap=115%x 10"

Ay = (—0.99— 1.15) x 107*?
B1=0

B, =0249x 10°%

P33k = (143)

(145)

1 The possibility of a degenerate minimum crossing the stf@sa}, {C;} and{Cas,} can be excluded by a direct
check.
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Table 6. Stable phases of BaTit different temperatures with the first choice for the parameters
involved in the definition of the free energy.

Phase Range of temperatures
[O4] = cubic T > 11997°C
[On], [Ca] T = T, =11997°C
[C4,] = tetragonal 1197°C> T > 1477°C
[Cal, [C2] T=T,=1477°C
[C2,] = orthorhombic 147°C>T > —8749°C
[C2], [Ca] T=T,;=-8749°C
[C3,] = rhombohedral —8749°C>T

Table 7. Stable phases of BaTiOat different temperatures with the second choice for the
parameters involved in the definition of the free energy.

Phase Range of temperatures
[O4] = cubic T > 11540°C

[On, [Ca] T =T, =11540°C

[C4y] = tetragonal 1180°C > T > —23352°C
[Ca], [C2] T =T, =-23352°C

[C2,] = orthorhombic  —23352°C > T

c=T74T — 110 x 10°°

By=0

Ap=12x 10713

A1 =4x 45T —175 x 10°°—12x 10713
By =24x 102

B, =30x 10723,

(146)

Then, using the data specified in (145), fbr > 11997 °C, the free energy takes on
its absolute minimum ako; thus only the disordered cubic phase,] is stable at these
temperatures. AT = 11997 °C, the functionéT‘”(T) vanishes, so that the cubic and
tetragonal phases coexist. For 19P°C < T < 14.77 the absolute minimum sits d@s, }
and the tetragonal phasgu] is stable. AtT = 14.77 °C, the absolute minimum shifts
to {Cy,} and for 1477 °C < T < —87.49 the stable phase is the orthorhombic one. At
T = —87.49 the absolute minimum shifts {@3,} and forT < —87.49 the stable phase is
the rhombohedral one.

These results, and the analogous ones obtained using the data specified in (146), of
(146), are resumed in tables 6 and 7.

If the free energy is expanded as a sufficiently high degree polynomial in the order
parameters, and for a convenient choice of the coefficients as functior, @l the phases
represented by the isotropy type strata of the orbit spaa@,ahay become accessible (as
stable phases) to the system at convenient temperatures. In particular, the sub-principal
strata require at least an 8th-degree polynomial, while the principal stratum requires at least
a 12th-degree polynomial.
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