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Abstract. Functions which are covariant or invariant under the transformations of a compact
linear group can be expressed advantageously in terms of functions defined in the orbit space
of the group, i.e. as functions of a finite set of basic invariant polynomials. The equalities and
inequalities defining the orbit spaces of all finite coregular real linear groups (most of which are
crystallographic groups) with at most four independent basic invariants are determined. For each
groupG acting in the Euclidean spaceRn, the results are obtained through the computation of a
metric matrixP̂ (p), which is defined only in terms of the scalar products between the gradients
of a set of basic polynomial invariantsp1(x), . . . pq(x), x ∈ Rn of G; the semi-positivity
conditions P̂ (p) > 0 are known to determine all the equalities and inequalities defining the
orbit spaceRn/G of G as a semi-algebraic variety in the spaceRq spanned by the variables
p1, . . . , pq . In a recent paper, thêP -matrices, forq 6 4, have been determined in an alternative
way, as solutions of a universal differential equation; the present paper yields a partial, but
significant, check on the correctness and completeness of these solutions. Our results can be
easily exploited, in many physical contexts where the study of covariant or invariant functions
is important, for instance in the determination of patterns of spontaneous symmetry breaking,
in the analysis of phase spaces and structural phase transitions (Landau’s theory), in covariant
bifurcation theory, in crystal field theory and in most areas of solid-state theory where use is
made of symmetry adapted functions.

1. Introduction

Functions which are covariant or invariant under the transformations of a compact linear
group (hereafter abbreviated asCLG) G play an important role in physics, and the
determination of their properties is often a basic problem to solve.

An example, which is relevant both to elementary particle and solid-state physics, is
offered by the determination of the possible patterns of spontaneous symmetry breaking
in theories in which the ground state of the system is determined by the minimum of an
invariant potentialV (x).

Let us sketch the relevant physical context. The symmetry groupG of the formalism
used to describe a physical system acts as a permutation group on the set of the solutions of
the evolution equations. When the ground state of the system is invariant only with respect
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to a proper subgroupG0 ⊂ G, theG-symmetry is said to bespontaneously broken(see, for
instance [1–4] and references therein) andG0 turns out to be thetrue symmetry group of
the system [5].

One of the most common classical mechanisms of spontaneous symmetry breaking
can be formalized in the following way. The ground state is represented by a vectorx0

belonging to the Euclidean spaceRn, on whichG acts as a group of linear transformations;
x0 is determined as the point at which aG-invariant potentialV (x) assumes its absolute
minimum (V might be a Higgs potential in a gauge field theory or a thermodynamic potential
in a Landau theory of structural phase transitions), andG0 is the isotropy subgroup ofG atx0

(the little group ofG0). Generally, the potential also depends on parametersγ (for instance
scalar self-couplings in Higgs potentials, or pressure and temperature in thermodynamic
potentials), that cannot be determined from invariance requirements under transformations
of G. In this casex0 andG0 can depend on theγ ’s, and various patterns of spontaneous
symmetry breaking are allowed, corresponding to distinct structuralphasesof the system.

In supersymmetric field theories the absolute minimum of the potential controls both the
spontaneous symmetry and supersymmetry breaking (see, for instance [6] and references
therein), and often the features of the two breaking schemes are related [7].

In all the cases just mentioned, the determination of the ground state of the system
rests on a precise determination of the pointx0, where the potential takes on its absolute
minimum, and the determination has to be analytical, since the isotropy subgroups ofG at
nearby points may be different.

Even if trivial in principle, the analytical determination of the minimum of an
invariant potential is generally a difficult computational task (even if one uses polynomial
approximations for the potential), owing to the large numbern of the variablesxi which
are often involved. An additional difficulty is related to the degeneracy of the stationary
points of the potential, which is an unavoidable consequence of the invariance properties
of the potential; In fact, it prevents a direct application [8] of Morse’s theory [9]. Also the
use of an extended Morse theory [10] seems not to give large advantages [11].

In 1971, Gufan [12, 13] proposed a new, more economical, approach to the problem,
which was based on the remark that aG-invariant functionV (x) can be expressed as
a function V̂ (p1, . . . , pq) of a finite setp(x) = (p1(x), . . . , pq(x)) of basic polynomial
invariants. When the pointp ∈ Rq is in the domain spanned byp(x), x ∈ Rn, the function
V̂ (p) has the same range asV (x), but is not plagued by the same degeneracies. Gufan’s
proposal found immediate applications in crystal field theory (see [14–19], to cite but a
few of the pioneering papers on the subject). A full and correct exploitation of his idea
required, however, an exact determination of the ranges of the functionspi(x), a non-trivial
problem that was only solved ten years later, when it was independently remarked [20]
that anyG-invariant function, being a constant along each orbit ofG, can be considered a
function in the orbit spaceRn/G of the action ofG in Rn. As a consequence, the problem
of determining the stationary points ofV (x) could be more economically reformulated
in Rn/G [21], where thepi ’s can be used advantageously to parametrize the orbits. In
Rn/G, the images of all the points ofRn with the same invariance properties underG

transformations form smooth sub-manifolds, which are usually calledstrata. By varying
the parametersγ , the location of the minimum ofV (x; γ ) may shift to a different stratum,
thus causing a (structural) phase transition of the system.

A sensible progress in the characterization of the geometry of the orbit spaces of the
CLGs was achieved using the powerful tools of geometric invariant theory [22, 23], which
led to the discovery of a simple recipe allowing us to build a concrete image of the orbit
space of any linearCLG and its stratification [20, 21, 24, 25]. It was shown that the orbit
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spaces of theCLGs are connected semi-algebraic varieties, whose defining equations and
inequalities can be expressed in the form of positivity conditions of matricesP̂ (p) built
only in terms of the gradients of the basic polynomial invariantsp1(x), . . . , pq(x):

P̂ab(p(x)) =
n∑
1

i

∂pa(x)

∂xi

∂pb(x)

∂xi

a, b = 1, . . . q . (1)

Using this result, one can obtain, for instance, a concrete realization of the orbit space
of any coregular† finite linear group. In fact, the class of these groups has been shown
to coincide with the class formed by the finite groups generated by reflections (which are
almost all crystallographic groups) and explicit or algorithmic descriptions of their basic
polynomial invariants have been given by many authors (see for instance [26–32]).

For a generalCLG, the matter is not that simple, since the determination of a minimal
complete set of basic invariant polynomials, i.e. of a minimal integrity basis of the ring of
polynomial invariants ofG, may be a difficult problem to solve‡. This serious handicap
in the direct approach to the determination of theP̂ -matrix associated to a generalCLG

stimulated the research, and led to the discovery, of an alternative indirect method of
computation of theP̂ -matrices associated toCLGs. These matrices have been shown [36–
38] to be solutions of amasterdifferential equation, satisfying convenient initial conditions
(allowable solutions). The master equation assumes a particularly simple canonical form
(canonical equation) for compact coregular linear groups (hereafter abbreviated asCCLGs).
The form of the canonical equation is the same for allCCLGs; it does involve only the
degrees of the elements of the integrity bases as free parameters.

The master equation approach to the determination and classification of theP̂ -matrices
gives strong support to the conjecture that the orbit spaces of all the compact linear groups
possessing a basis ofq independent basic polynomial invariants with the same degrees can
be classified in a finite (and small, for small dimensions and degrees) number of isomorphism
classes. The conjecture has been proved to hold true forq 6 4.

This fact makes the orbit-space approach to the study of covariant functions, and, in
particular, of spontaneous symmetry breaking, particularly appealing. In fact, invariance
properties are often the only bounds which are imposed on the potential (beyond regularity
and stability properties and/or bounds on the degree, when the potential is a polynomial
function). If the symmetry groups of the potentials of different theories share isomorphic
orbit spaces, the potentials have the same formal expression and the same domain when
written as functions in orbit space, despite the completely different physical meaning of the
variables and parameters involved in the definition of the potentials. Thus, the problems of
determining the geometric features of the phase space, the location and stability properties of
the minima of the potential, the number of primary strata (and, consequently, the maximum
number of phases) and the allowed transitions between primary strata are identical in all
these theories [21, 35–37].

The pursuit of the ambitious program of determining the orbit spaces of all theCLGs,
following the master equation approach, has already given encouraging results, but has left
some serious open problems [38]. The main ones are listed below; some of them will be
dealt with and partially solved in this paper:

(i) All the allowable solutions of the canonical equation have been determined forq 6 4
(see [37, 39] hereafter referred to as I and II), while forq > 4, the determination of all

† G is said to be coregular if there is no algebraic relation among the elements of a minimal set of its basic invariant
polynomials, i.e. among the elements of the minimal integrity bases of the ring of its polynomial invariants.
‡ A complete classification of compact coregular linear groups is known, at present, only for finite groups and for
simple [33] and semisimple [34] Lie groups.
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the allowable solutions appears to be still possible, but extremely lengthy. The set-up of
an inductive procedure for the determination of at least a part of the allowable solutions
of the canonical equation is in progress [40, 41].

(ii) The canonical equation and the associated initial conditions are only a set of necessary
conditions that theP̂ -matrices of theCLGs must satisfy; even if quite stringent, they
need not be sufficient. Therefore, once the allowable solutions of the canonical equation
have been determined, the problem remains of selecting those which are really generated
by a group. In this paper we shall give a partial answer to this problem in the case of
coregular groups withq 6 4.

(iii) An effective formalization of the condition that there is no algebraic relation among
the elements of a minimal integrity basis (minimality+ regularity condition) has not
yet been found, nor used, in I and II. Thus, it cannot be excluded that some of the
allowableP̂ -matrices determined in I and II are indeed associated to non-minimal bases
or to non-coregular groups.

(iv) A sound analysis of the structure of the master equation in the general non-coregular
case is still missing; some results have been obtained only for non-coregularCLGs with
a sole independent relation among the elements of the minimal integrity bases [42].

The paper will be organized in the following way. We shall begin, in section 2, with
a short survey of the geometry of linear group actions, of the properties of the canonical
equation, and we shall briefly argue on the possibility of classifying the orbit spaces of the
CCLGs through the determination of the allowable solutions of the canonical equation. In
sections 3 and 4 we shall determine explicitly theP̂ -matrices associated to all the finite
irreducible and, respectively, reducible reflection groups with no more than four independent
basic invariants. The results will be obtained using the explicit form of the basic invariant
polynomials of the reflection groups that can be found in the mathematical and physical
literature. A comparison of our results with the allowable solutions of the canonical equation
reported in I and II will allow us to identify generating groups for all the irreducible, and
some of the reducible, allowablêP -matrices.

After a few concluding remarks on our mathematical results, collected in section 5, in the
last section we shall illustrate how they can be used in one of the specific physical contexts
mentioned in the introduction. Our aim will be to show that, despite the sophisticated
mathematical tools that have been used to achieve the results presented in the paper,
their practical exploitation in physical contexts only requires an elementary use of standard
analysis, geometry and group theory. The physical problem we shall deal with in section 6
has been studied by various authors in the past [53]; our revisitation will not lead to
essentially new results, but to the fact that explicit knowledge of the algebraic relations
defining the strata will allow us to arrive at explicit analytic solutions in a particularly
simple way.

2. An overview of the geometry of linear group actions

In this section, we shall first define most of our notation and recall, without proof, some
results concerning invariant theory and the geometry of orbit spaces ofCLGs (see for instance
[43, 44] and references therein), then we shall introduce the first definitions and the basic
tools for our subsequent analysis.

For our purposes, it will not be restrictive to assume thatG is a matrix subgroup of
On(R)† acting linearly in the Euclidean spaceRn.

† The stronger assumptionG ⊆ SOn(R) introduced in I and II is due to a slip; in fact, the unimodularity condition
has never been used in these references.
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2.1. Orbits and strata

We shall denote byx = (x1, . . . , xn) a point ofRn. The groupG acts inRn in the following
way:

x ′
i = (g · x)i =

n∑
1

j
gij xj x ∈ Rn g ∈ G . (2)

The G-orbit �x̄ throughx̄ ∈ Rn and theisotropy subgroupGx̄ of G at x̄ ∈ Rn are defined
by the following relations:

�x̄ = {g · x̄ | g ∈ G} Gx̄ = {g ∈ G | g · x̄ = x̄} . (3)

The invariance of the Euclidean norm under orthogonal transformations assures that the
G-orbit throughx̄ is contained in the sphere of radiusx̄, centred in the origin ofRn, while
the linearity of the action ofG in Rn implies

Gx̄ = Gλx̄ ∀λ ∈ R∗ . (4)

The isotropy subgroup ofG at the origin ofRn coincides withG. The isotropy subgroups
Gg·x̄ of G, at points lying on the same orbit�x̄ are conjugated subgroups inG:

Gg·x̄ = gGx̄g
−1 ∀g ∈ G . (5)

The class of all the subgroups ofG conjugated toGx̄ in G will be said to be theorbit
type of�x̄ or, equivalently, of the points of�x̄ ; it specifies the symmetry properties of�x̄

under transformations induced by elements ofG.
The set of all the pointsx ∈ Rn (or, equivalently, of all the orbits ofG) with the same

orbit type form anisotropy-type stratum of the action ofG in Rn, hereafter called simply
a stratum ofRn. All the connected components of a stratum are smooth iso-dimensional
sub-manifolds ofRn.

2.2. The orbit space

The orbit spaceof the action ofG in Rn is defined as the quotient spaceRn/G (obtained
through the equivalence relation between points belonging to the same orbit) endowed with
the quotient topology and differentiable structure. We shall denote byπ the canonical
projectionRn → Rn/G. Whole orbits ofG are mapped byπ into single points ofRn/G.
The image throughπ of a stratum ofRn will be called an (isotropy-type) stratum of Rn/G;
all its connected components turn out to be smooth iso-dimensional manifolds.

Almost all the points ofRn/G belong to a unique stratum6p, the principal stratum,
which is a connected open dense subset ofRn/G. The boundary6p\6p of 6p is the union
of disjoint singular strata. All the strata lying on the boundarȳ6\6 of a stratum6 of
Rn/G are open in6̄\6.

The following partial ordering can be introduced in the set of all the orbit types:
[H ] < [K] if H is a subgroup of a subgroup ofG conjugated withK. The orbit type [H ]
of a stratum6 is contained in the orbit types [Hb] of all the strata6b lying in its boundary;
therefore, more peripheral strata ofRn/G are formed by orbits with higher symmetry under
G transformations. The number of distinct orbit types ofG is finite and there is a unique
minimum orbit type, theprincipal orbit type, corresponding to the principal stratum; there
is also a unique maximum orbit type [G], corresponding to the image throughπ of all the
points ofRn, which are invariant underG.

A faithful image ofRn/G can be obtained making use of a basic result of the geometric
approach to invariant theory in the following way.
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A function f (x) is said to beG-invariant if

f (g · x) = f (x) ∀x ∈ Rn g ∈ G . (6)

The set of all real,G-invariant, polynomial functions ofx forms a ringR[x]G, that admits a
finite integrity basis [45, 46]. Therefore, there exists a finite minimal collection of invariant
polynomialsp(x) = (p1(x), p2(x), . . . , pq(x)) such that any elementF ∈ R[x]G can be
expressed as a polynomial function̂F of p(x):

F̂ (p(x)) = F(x) ∀x ∈ Rn . (7)

The polynomialF̂ (p) will be said to have weightw, if w is the degree of the polynomial
F(x); it will be said to bew-homogeneous ifF(x) is.

The elements of a (minimal) basis ofR[x]G can be chosen to be homogeneous
polynomials. The numberq of elements of a minimal integrity basis and their homogeneity
degreesdi ’s are only determined by the groupG.

To avoid trivial situations, in this paper we shall only consider linear groups with no
fixed points, but for the origin ofRn. In this case, the minimum degree of the elements of
a minimal integrity basis is necessarily 2, and the following conventions can be adopted:

d1 > d2 > . . . dq = 2 pq(x) = ‖x‖2 =
n∑
1

i
x2

i . (8)

Hereafter, by a minimal integrity basis ofG (abbreviated intoMIB of G) we shall always
mean aminimal homogeneous integrity basisfor the ring of G-invariant polynomials, for
which the conventions of (8) hold true.

SinceG is a compact group, the orbits ofG are separated by the elements of aMIB of
G, i.e. at least one element of aMIB of G takes on different values on two distinct orbits.
Thus, the elements of aMIB of G provide a good parametrization of the points ofRn/G,
that turns out to also be smooth, since the orbit mapp : Rn −→ Rq , which maps all the
points ofRn lying on an orbit ofG onto a single point ofRq , induces a diffeomorphism of
Rn/G onto a semialgebraicq-dimensional connected closed subset ofRq .

2.3. Coregular and non-coregular groups

The groupG is said to becoregular if the elements of itsMIBs are algebraically, and
therefore functionally, independent. IfG is non-coregular, the elements of any one of its
MIBs satisfy a certain number of algebraic identities inRn:

F̂A(p(x)) = 0 A = 1, . . . , K . (9)

The associated equations

F̂A(p) = 0 A = 1, . . . , K (10)

define an algebraic variety inRq , which will be called thevarietyZ of the relations(among
the elements of theMIB). The numberK will be said thecoregularity orderof G. If G is
coregular, there are no relations among the elements of itsMIBs, the coregularity order of
G is zero and we shall setZ = Rn.

From now on, in this paper, we shall deal with coregularCLGs.
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2.4. TheP̂ (p) matrix

A characterization of the imagep(Rn) of the orbit space ofG as a semi-algebraic variety
can be easily obtained through a matrix̂P(p), defined only in terms of theG-invariant
Euclidean scalar products between the gradients of the elements of theMIB {p(x)}:

Pab(x) =
n∑
1

i

∂pa(x)

∂xi

∂pb(x)

∂xi

= P̂ab(p(x)) a, b = 1, . . . , q (11)

where in the last member, use has been made of Hilbert’s theorem, in order to express
Pab(x) as a polynomial function ofp1(x), . . . , pq(x).

The following fundamental theorem clarifies the meaning and points out the role of the
matrix P̂ (p):

Theorem 2.1.Let G be a compact coregular subgroup ofOn(R), p the mapRn → Rq

defined by the homogeneousMIB {p1(x), p2(x), . . . , pq(x)} and P̂ (p) the matrix defined
in (11). Then S̄ = p(Rn) is the unique semialgebraic connected subset of the variety
Z ⊆ Rq of the relations among the elements of theMIB where P̂ (p) is positive semi-
definite. Thek-dimensional primary strata of̄S are the connected components of the set
Ŵ (k) = {p ∈ Z; | P̂ (p) > 0, rank(P̂ (p)) = k}; they are the images of the connected
components of the k–dimensional isotropy type strata ofRn/G. In particular, the varietyS
of the interior points ofS̄, whereP̂ (p) has the maximum rank, is the image of the principal
stratum.

It will be worthwhile to note that, for coregular groups,Z = Rq and that the image of
the unit sphere ofRn under the orbit mapp(x) is a compact connected(q − 1)-dimensional
semialgebraic variety in the spaceRq−1 spanned by the variablesp1, . . . , pq−1.

The following properties, which are common to all the matricesP̂ (p), are more or less
immediate consequences of the definition of these matrices:

P1 Symmetry, homogeneity and bounds on the last row and column.The matrixP̂ (p) is a
q ×q symmetric matrix, whose elementŝPab(p) are realw-homogeneous polynomials with
weight

w(P̂ab) = da + db − 2 . (12)

The last row and column are determined by the degrees of theMIB:

P̂qa(p) = P̂aq(p) = 2dapa a = 1, 2, . . . , q . (13)

P2Tensor character.The matrix elements of̂P(p) transform as the components of a rank 2
contravariant tensor underMIB transformations that maintain the conventions fixed in (8)
(these transformations will be hereafter calledMIBTs). In fact, let {p(x)} and {p′(x)} be
distinct MIBs; the p′

a(x)’s, beingG-invariant polynomials, can be expressed as polynomial
functions of thepa(x)’s:

p′
α = p′

α(p) α = 1, 2, . . . , q − 1 (14)

where the polynomial functionp′
α(p) only depends on thepa ’s such that† da 6 d ′

α. Then,

P̂ ′(p′(p)) = J (p)P̂ (p)J T (p) (15)

where we have denoted byJ (p) the Jacobian matrix of the transformation:

Jab(p) = ∂p′
a(p)/∂pb a, b = 1, . . . , q (16)

† Since in our conventions theqth element of anyMIB is fixed to equal
∑n

1i
x2

i , when defining aMIBT we shall

always understand the conditionp′
q (p) = pq .
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the matrixJ turns out to be upper-block triangular and the determinant ofP̂ (p) to be a
relative invariant of the group of theMIBTs.

2.5. Classification of the orbit spaces ofCCLGs

Two matricesP̂ (p) and P̂ ′(p′) will be said to beequivalent if they are connected by
a relation like (15), whereJ (p) is the Jacobian matrix of aMIBT p′ = p′(p). Thus,
the P̂ -matrices computed from differentMIBs of the sameCLG are equivalent, and the
semialgebraic varieties̄S andS̄ ′ defined by the positivity conditions imposed onP̂ (p) and
P̂ ′(p′), respectively, are equivalent concrete realizations of the orbit spaceRn/G.

SinceG is coregular, its orbit space is completely determined by the positivity conditions
of a P̂ -matrix computed from any one of itsMIBs; for non-coregular groups, also a complete
set of relations among thepa ’s has to be specified.

2.6. Isomorphism classes of orbit spaces

The notions ofMIBTs (see equation (14)) and of equivalence ofP̂ -matrices (see equation (15))
can be extended to the case of different coregular groupsG andG′, provided that theirMIBs

have the same number of elements, with the same degrees. Let,{p} and {p′} be MIBs for
G andG′, respectively.

Definition 2.1.The orbit spaceRn/G andRn′
/G′ of the compact coregular linear groupsG

andG′ will be said to be isomorphic if the associatedP̂ -matricesP̂ (p) and P̂ ′(p′) satisfy
(15), where the transformationp′ = p′(p) has all the formal properties of aMIBT.

If G andG′ have isomorphic orbit spaces, then the images of their orbit spacesS̄ and
S̄ ′, associated with theMIBs {p} and{p′} are isomorphic semialgebraic varieties:

S̄ ′ = p′(S̄) . (17)

Thus the classification of the isomorphism classes of the orbit spaces of theCCLGs rests
on the determination of a representative for each class of equivalentP̂ (p) matrices (and,
for non-coregular groups, on the determination of the possible relations among the elements
of the MIBs). This can be done, in principle, for allCCLGs. The matricesP̂ (p) have
been shown [36], in fact, to be solutions of acanonical differential equation, satisfying
convenient initial conditions (allowable solutions). The canonical equation does involve
only the degrees{d1, d2, . . . , dq} of the MIBs as free parameters, as we shall see in the next
subsection.

2.7. Boundary and positivity conditions

For coregular groups, the orbit spaceS̄, defined in theorem 2.1, is a connectedq-dimensional
semialgebraic variety ofRq and, like all semialgebraic varieties [47], it presents a natural
stratification in connected semialgebraic sub-varietiesσ̂ , called primary strata† We shall
denote byI(σ̂ ) the ideal formed by all the polynomials inp ∈ Rq vanishing onσ̂ . Every
f̂ (p) ∈ I(σ̂ ) defines an invariant polynomial function inRn vanishing at all the pointsx
lying in the set6f = p−1(σ̂ ):

f (x) = f̂ (p(x)) = 0 ∀x ∈ 6f . (18)

† A simple example of a compact connected semialgebraic variety ofR3 is yielded by a polyhedron. Its interior
points form its unique three-dimensional primary stratum, while two-, one- and zero-dimensional primary strata
are formed, respectively, by the interior points of each face, by the interior points of each edge, by each vertex.
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The gradient∂f (x) is obviously orthogonal to6f at everyx ∈ 6f , but, it must also be
tangent to6f sincef (x) is a G-invariant function [43, 24]. As a consequence,

0 = ∂f (x) =
q∑
1

b
∂bf̂ (p)

∣∣∣∣
p=p(x)

∂pb(x) ∀x ∈ 6f . (19)

By taking the scalar product of (19) with∂pa(x), we end up with the followingboundary
conditions[38]:

q∑
1

b
P̂ab(p)∂bf̂ (p) ∈ I(σ̂ ) ∀f̂ ∈ I(σ̂ ) and ∀σ̂ ⊆ S̄ . (20)

If {Q(σ̂)

1 (p), Q
(σ̂ )

2 (p), . . . , Q(σ̂ )
m (p)} is an integrity basis forI(σ̂ ), (20) is equivalent to

q∑
1

b
P̂ab(p)∂bQ

(σ̂ )
r (p) =

m∑
1

s
λ

(σ̂ )

rs;a(p) Q(σ̂ )
s (21)

where theλ’s arew-homogeneous polynomial functions ofp.
In the particular case in whicĥσ is a (q − 1)-dimensional primary stratum, the ideal

I(σ̂ ) has a uniqueirreducible generator,Q(σ̂)(p), and (21) reduces to the simpler form
[36, 38]

q∑
1

b
P̂ab(p)∂bQ

(σ̂ )(p) = λ(σ̂ )
a (p) Q(σ̂ )(p) a = 1, . . . , q . (22)

The validity of (21) can be extended to the case in whichσ̂ is a union of primary strata.
In particular, the idealI(B), associated to the unionB of all the (q − 1)-dimensional strata
of S̄ (whose closure forms the boundary ofS̄) has a unique generatorA(p):

A(p) =
∏
σ̂⊆B

Q(σ̂)(p) (23)

and the following relation is satisfied:

q∑
1

b
P̂ab(p) ∂bA(p) = λ(A)

a (p)A(p) (24)

whereλ(A)(p) is a contravariant vector field withw-homogeneous components, and

λ(A)(p) =
∑
σ̂⊆B

λ(σ̂ )(p) . (25)

The results summarized below have been proved in [37].
The vectorλ(A)(p) can be reduced to the canonical formλ(A)

a (p) = 2δaqw(A) in
particularMIBs, the so-calledA-bases, which are intrinsically defined. In anA-basis, the
boundary conditions assume the followingcanonicalform:

q∑
1

b
P̂ab(p)∂bA(p) = 2δaqw(A)A(p) a = 1, . . . , q . (26)

From equation (26) one deduces that, in everyA-basis, the following facts hold true:

(i) The pointp(0) = (0, . . . , 0, 1) lies in S; it is the image of aG-orbit lying on the unit
sphere ofRn.
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(ii) A(p) is a factor of detP̂ (p); its weight is bounded:

2d1 6 w(A) 6 w(detP̂ ) = 2
q∑
1

a
da − 2q (27)

and it can be normalized atp(0):

A(p(0)) = 1 (28)

we shall call it thecomplete active factorof detP̂ (p).
(iii) The restriction,A(p)|pq=1, of A(p) to the image of the unit sphere ofRn in Rq has a

unique local non-degenerate maximum lying atp(0); thus,

∂αA(p)|p=p(0) = 0 α = 1, . . . , q − 1 . (29)

(iv) P̂ (p(0)) is block diagonal, each block being associated to a subset ofpa ’s sharing the
same degree, and, in a subclass ofA-bases (standardA-bases), it is diagonal:

P̂ab(p
(0)) = dadbδab a, b = 1, . . . , q . (30)

Two different standardA-bases are related by aMIBT not involving pq :

p′
α = fα(p1, . . . , pq−1) α = 1, . . . , q − 1 (31)

the corresponding Jacobian matrix is orthogonal atp(0).

2.8. The canonical equation

Let us now look at the boundary conditions from a different point of view: the set
{p1, . . . , pq} will be viewed as a set ofweighted indeterminates, with integer weights
d1, . . . , dq satisfying the conventions

d1 > d2 > . . . dq = 2 (32)

and the boundary conditions expressed in (26) will be considered as a set of equations in
which P̂ab(p) andA(p) are thought of as unknown polynomial functions ofp, satisfying
the conditions listed under items P1, P2 and in (27). The positivity conditions specified in
(28) and (30) will be treated as initial conditions. With the above meaning for the symbols,
(26) will be called thecanonical equation.

The solutions(P̂ (p), A(p)) of the canonical equation satisfying the initial conditions
specified in (28) and (30) will be calledallowable solutionsand the correspondinĝP
matrices,allowableP̂ matrices.

A solution of the canonical equation will be said to beirreducible, if A(p) is an
irreducible (real) polynomial andfully active, if A(p) = constant× detP̂ (p).

Two allowable P̂ matrices will be said to be equivalent if aw-homogeneous
transformation exists on the indeterminatesp1, . . . , pq−1 such that (15) is satisfied.

The allowableP̂ -matricesP̂ (p)|pq=1 have been shown to be positive semi-definite only
in a compact(q − 1)-dimensional semialgebraic variety of the spaceRq−1 spanned by the
variablesp1, . . . , pq−1, containing the pointp(0).

All the P̂ -matrices associated to the differentMIBs of any CCLG with no fixed points
are necessarily equivalent to an allowableP̂ -matrix. At present we do not know if the
converse holds also true, i.e. if everyallowable P̂ -matrix is generated by aCCLG with no
fixed points.

The allowable solutions of the canonical equations forq 6 4 have been determined in
I and II. For each choice of the degrees{d1, d2, . . . , dq}, only a finite or null number of
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non-equivalent solutions has been found, showing the existence ofselection rulesfor the
degrees of theCCLGs. The solutions can be organized intowers; the degrees of the elements
of the same tower can be written in the formdα = sd(0)

α , α = 1, . . . , q − 1, wheres is an
integer scale parameter. A solution of the canonical equation corresponding tos = 1 will
be said afundamentalsolution.

Exploiting the fact that all thefinite coregular linear groups have been classified in the
mathematical literature and the associatedMIBs have been determined [48], in the following
sections we shall determine thêP -matrices of all the finiteCLGs with two-, three- [38] and
four-dimensional [39] orbit spaces, and we shall check that they can all be found among
the allowable solutions of the canonical equation listed in I and II.

3. Irreducible reflection groups with 2, 3 and 4 basic invariants

Finite groups generated by reflections exhaust the class offinite CLGs. The explicit form
of the elements of at least oneMIB is known for all these groups [27–32]. Thus, the
correspondingP̂ (p) matrices can be computed, as well as the complete factorsA(p) of
detP̂ (p) and the vector fieldsλ(A)(p) appearing in (24).

In general, theMIBs proposed in the literature do not correspond toA-bases, so the
comparison with the results reported in I and II is not immediate. The easiest way to
determine the form of aMIBT leading to anA-basis is through the following condition on
the Jacobian matrixJab(p) of the transformation:

λ′(A)

a (p′(p)) =
q∑
1

b
Jab(p) λ

(A)
b (p) = 0 a = 1, 2, . . . , (q − 1) . (33)

When theA-basis is not unique, (33) is not sufficient to determine all the free parameters
involved in the definition of theMIBT. The residual free parameters can, however, be
determined by requiring that the parametric expression ofP̂ ′(p′) in a generalA-basis
coincides with an allowableP̂ -matrix listed in I or II. To shorten our formulae and to
make easier the comparison, we shall define

p̃ = (p1, . . . , pq−1, 1) for p = (p1, . . . , pq) (34)

x̌ = (x1, . . . , xn, 0) for x = (x1, . . . , xn) (35)

Rab = P̂ab/dadb a, b = 1, . . . , q (36)

fn,k(x) =
n∑
1

i
xn+1−k

i for x = (x1, . . . , xn) . (37)

3.1. IrreducibleCCLGswith two basic invariants

The irreducibleCCLGs with two-dimensional orbit spaces are classified in the mathematical
literature according to the followingtypes: A2, B2, G2 andI2(m). The typeG2 andI2(6)

groups have the same invariants, so we shall not discuss separately the group of typeG2.

3.2. TypeA2

The group acts on the planey1+y2+y3 = 0 of R3 by permutations. Therefore the group and
its invariants can be obtained from the reduction of the groupS3, acting ony = (y1, y2, y3)

by permutations of the coordinates.
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A MIB for S3 is yielded by {f3,1(y), f3,2(y), f3,3(y)}, wheref3,k is defined in (37).
The reduction of the linear groupS3 can be obtained by means of an orthogonal basis
transformation inR3, induced by the matrix

A = 1

6


√

3 −√
3 0

1 1 −2

√
2

√
2

√
2

 . (38)

The elements of the linear group of typeA2 are obtained as the principal minors built
with the first two rows and columns of the matricesAgA−1, g ∈ S3 and, after setting, for
x = (x1, . . . , xn),

pa(x) = p̃a(A
−1x̌) (39)

andx = (x1, x2), a MIB for A2 is yielded by{p1(x), p2(x)} or, explicitly,

p1(x) = x2
(
3x2

1 − x2
2

)
/
√

6 p2(x) = x2
1 + x2

2 . (40)

The unique element of the associated reducedP̂ -matrix is easily calculated to be

P̂11(p) = 3p2
2/2 (41)

and after the followingMIBT:

p′
1 =

√
6p1 (42)

one obtains, forp′
2 = 1, the allowableP̂ (p) matrix determined in I forq = 2 andd1 = 3:

R′
11(p̃

′) = 1 . (43)

3.3. TypeB2

The group acts onx = (x1, x2) by permutations and sign changes of the coordinates. A
MIB can be chosen as follows:

p1(x) = x4
1 + x4

2 p2(x) = x2
1 + x2

2 . (44)

The unique essential element of the associatedP̂ -matrix turns out to be the following:

P̂11(p) = 8p2
(
3p1 − p2

2

)
(45)

and after the followingMIBT:

p′
1 = 4p1 − 3p2

2 (46)

one obtains, forp′
2 = 1, the allowableR̂(p) matrix determined in I forq = 2 andd1 = 4:

R′
11(p̃

′) = 1 . (47)
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3.4. TypeI2(m), m > 3

The groups of typeI2(m), m > 3, are the dihedral groupsDm, defined as the groups of
orthogonal transformations ofR2 which preserve a regularm-sided polygon centred at the
origin. After setting

z = x1 + ix2 (48)

a MIB of Dm is yielded, for instance, by the invariantsp(x) = {p1(x), p2(x)}, with

p1(x) = <zm p2(x) = |z|2 = x2
1 + x2

2 . (49)

The unique essential element of the associatedP̂ -matrix turns out to be the following:

P̂11(p) = d2
1pm−1

2 . (50)

A comparison with I shows that{p} is a standardA-basis.

3.5. TypeA3

The group acts on the planey1 + y2 + y3 + y4 = 0 of R4 by permutations. Therefore
the group and its invariants can be obtained from the reduction of the groupS4, acting on
y = (y1, y2, y3, y4) by permutations of the coordinates.

A MIB for S4 is yielded by{f1(y), . . . , f4(y)}, wherefk is defined in (37). The reduction
of the linear groupS4 can be obtained by means of an orthogonal basis transformation in
R4, induced by the matrix

A = 1

6



3
√

2 −3
√

2 0 0

√
6

√
6 −2

√
6 0

√
3

√
3

√
3 −3

√
3

3 3 3 3


. (51)

The elements of the group of typeA3 are obtained as the principal minors built with the first
three rows and columns of the matricesAgA−1, g ∈ S4 and, after settingx = (x1, x2, x3),
a MIB is yielded by{p1(x), p2(x), p3(x)}, with pa(x) defined in (39); explicitly:

p1(x) = (
6x4

1 + 12x2
1x2

2 + 6x4
2 + 12

√
2x2

1x2x3 − 4
√

2x3
2x3 + 6x2

1x2
3 + 6x2

2x2
3 + 7x4

3

)
/12

p2(x) = (
3
√

2x2
1x2 −

√
2x3

2 + 3x2
1x3 + 3x2

2x3 − 2x3
3

)
/2

√
3

p3(x) = x2
1 + x2

2 + x2
3 .

(52)

The essential elements of the associatedP̂ (p)-matrix turn out to be the following:

P̂11(p) = 2
(
18p1p3 + 2p2

2 − 3p3
3

)
/3

P̂12(p) = 7p2p3

P̂22(p) = 9
(
4p1 − p2

3

)
/4

(53)

and after the followingMIBT:

p′
1 = 12p1 − 5p2

3 p′
2 = 2

√
3p2 (54)

one obtains, forp′
3 = 1, the matrixR of class III.1 (m = 1), reported in I:

R′
11(p̃

′) = −p′
1 + p′

2
2 + 2

R′
12(p̃

′) = 2p′
2

R′
22(p̃

′) = p′
1 + 2 .

(55)
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3.6. TypeB3

The group acts onx = (x1, x2, x3) by permutations and sign changes of the coordinates. A
MIB can be chosen as follows:

p1(x) = x6
1 + x6

2 + x6
3 p2(x) = x4

1 + x4
2 + x4

3 p3(x) = x2
1 + x2

2 + x2
3 . (56)

The essential elements of the associatedP̂ (p)-matrix turn out to be the following:

P̂11(p) = 30p1p2 + 30p1p
2
3 − 30p2p

3
3 + 6p5

3

P̂12(p) = 32p1p3 + 12p2
2 − 24p2p

2
3 + 4p4

3

P̂22(p) = 16p1.

(57)

and after the followingMIBT:

p′
1 = 324p1 − 432p2p3 + 124p3

3 p′
2 = 18p2 − 10p2

3 (58)

one obtains, forp′
3 = 1, the matrixR of class III.2 (m = 1) reported in I:

R′
11(p̃

′) = −p′
1p

′
2 − 4p′

1 + 8p′
2

2 − 16p′
2 + 64

R′
12(p̃

′) = −2p′
1 + p′

2
2 + 12p′

2

R′
22(p̃

′) = p′
1 + 4p′

2 + 16.

(59)

3.7. TypeD3

The group acts onx = (x1, x2, x3) by permutations and by changes of an even number of
signs of the coordinates. AMIB can be chosen as follows:

p1 = x4
1 + x4

2 + x4
3 p2 = x1x2x3 p3 = x2

1 + x2
2 + x2

3 . (60)

The essential elements of the associatedP̂ -matrix turn out to be the following:

P̂11(p) = 24p1p3 + 48p2
2 − 8p3

3

P̂12(p) = 4p2p3

P̂22(p) = (−p1 + p2
3)/2

(61)

and, after the followingMIB transformation:

p′
1 = 4p2

3 − 6p1 p′
2 = 6

√
3p2 (62)

one obtains, forp′
3 = 1, the matrixR of class III.1 (m = 1) reported in I. The orbit spaces

of the linear groupsA3 andD3 turn out to be isomorphic.

3.8. TypeH3

The group is the symmetry group of the icosahedron inR3.
Let us denote byτ the golden ratio:

τ = (1 +
√

5)/2 . (63)
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Then, according to [31], aMIB for the group can be chosen as follows:

p1(x) = (1 + τ 2)−5
[
(1 + τ 10)(x10

1 + x10
2 + x10

3 ) + 45τ 2(x2
1x8

2 + x2
2x8

3 + x2
3x8

1)

+210τ 4(x4
1x6

2 + x4
2x6

3 + x4
3x6

1) + 210τ 6(x6
1x4

2 + x6
2x4

3 + x6
3x4

1)

+45τ 8(x8
1x2

2 + x8
2x2

3 + x8
3x2

1)
]

p2(x) = (1 + τ 2)−3
[
(1 + τ 6)(x6

1 + x6
2 + x6

3) + 15τ 2(x2
1x4

2 + x2
2x4

3 + x4
1x2

3)

+ 15τ 4(x4
1x2

2 + x4
2x2

3 + +x2
1x4

3)
]

p3(x) = x2
1 + x2

2 + x2
3 .

(64)

The essential elements of the associatedP̂ -matrix turn out to be the following:

P̂11(p) = 192p1p2p3 + 336p1p
4
3/5 + 16p3

2/9 − 1136p2
2p

3
3/15− 15 968p2p

6
3/75

+81 412p9
3/1125

P̂12(p) = 336p1p
2
3/5 + 184p2

2p3/3 − 404p2p
4
3/3 + 2656p7

3/75

P̂22(p) = 18p1 − 12p2p
2
3 + 174p5

3/25

(65)

and, after the followingMIBT:

p′
1 = (50 625p1 − 123 750p2p

2
3 + 39 285p5

3)/2 p′
2 = 225p2 − 93p3

3 (66)

one obtains, forp′
3 = 1, the matrixR of class III.3(m = 1) reported in I:

R′
11(p̃

′) = 1152− 12p′
1 − 168p′

2 − 4p′
1p

′
2 + 44p′

2
2 + p′

2
3

R′
12(p̃

′) = −6p′
1 + 60p′

2 + 5p′
2

2

R′
22(p̃

′) = 96+ p′
1 + 14p′

2 .

(67)

3.9. TypeA4

The group acts on the planey1 + y2 + y3 + y4 + y5 = 0 of R5 by permutations. Therefore
the group and its invariants can be obtained from the reduction of the groupS5, acting on
y = (y1, . . . , y5) by permutations of the coordinates.

A MIB for S5 is yielded by {f5,1(y), . . . , f5,5(y)}, where f5,k is defined in (37).
The reduction of the linear groupS5 can be obtained by means of an orthogonal basis
transformation inR5, induced by the matrix

A =



1√
2

− 1√
2

0 0 0

1√
6

1√
6

− 2√
6

0 0

1
2
√

3
1

2
√

3
1

2
√

3
− 3

2
√

3
0

1
2
√

5
1

2
√

5
1

2
√

5
1

2
√

5
− 4

2
√

5

1√
5

1√
5

1√
5

1√
5

1√
5


. (68)

The elements of the group of typeA4 are obtained as the principal minors built with the first
four rows and columns of the matricesAgA−1, g ∈ S5 and, after settingx = (x1, . . . , x4),
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a MIB is yielded by{p1(x), . . . p4(x)}, wherepa(x) is defined in (39); explicitly,

p1(x) = 1800−1
(
750

√
6x4

1x2 + 500
√

6x2
1x3

2 − 250
√

6x5
2 + 750

√
3x4

1x3 + 1500
√

3x2
1x2

2x3

+750
√

3x4
2x3 + 750

√
6x2

1x2x
2
3 − 250

√
6x3

2x2
3 + 250

√
3x2

1x3
3 + 250

√
3x2

2x3
3

−500
√

3x5
3 + 450

√
5x4

1x4 + 900
√

5x2
1x2

2x4 + 450
√

5x4
2x4

+900
√

10x2
1x2x3x4 − 300

√
10x3

2x3x4 + 450
√

5x2
1x2

3x4 + 450
√

5x2
2x2

3x4

+525
√

5x4
3x4 + 450

√
6x2

1x2x
2
4 − 150

√
6x3

2x2
4 + 450

√
3x2

1x3x
2
4

+450
√

3x2
2x3x

2
4 − 300

√
3x3

3x2
4 + 90

√
5x2

1x3
4 + 90

√
5x2

2x3
490

√
5x2

3x3
4

−459
√

5x5
4

)
p2(x) = 60−1

(
30x4

1 + 60x2
1x2

2 + 30x4
2 + 60

√
2x2

1x2x3 − 20
√

2x3
2x3 + 30x2

1x2
3 + 30x2

2x2
3

+35x4
3 + 12

√
30x2

1x2x4 − 4
√

30x3
2x4 + 121

√
5x2

1x3x4 + 121
√

5x2
2x3x4

−81
√

5x3
3x4 + +18x2

1x2
4 + 18x2

2x2
4 + 18x2

3x2
4 + 39x4

4

)
p3(x) = 30−1

(
15

√
6x2

1x2 − 5
√

6x3
2 + 15

√
3x2

1x3 + 15
√

3x2
2x3 − 10

√
3x3

3 + 9
√

5x2
1x4

+9
√

5x2
2x4 + 9

√
5x2

3x4 − 9
√

5x3
4

)
p4(x) = x2

1 + x2
2 + x2

3 + x2
4 .

(69)

The essential elements of the associatedP̂ (p)-matrix turn out to be the following:

P̂11(p) = 5
(
12p2

2 + 128p1p3 + 20p2p
2
4 − 5p4

4

)
/48

P̂12(p) = (
46p2p3 + 84p1p4 − 35p3p

2
4

)
/6

P̂13(p) = (
40p2

3 + 66p2p4 − 15p3
4

)
/8

P̂22(p) = 2
(
16p2

3 + 90p2p4 − 15p3
4

)
/15

P̂23(p) = 12(5p1 − p3p4) /5

P̂33(p) = 9
(
5p2 − p2

4

)
/5

(70)

and, after the followingMIBT:

p′
1 = 30

√
15(4p1 − 3p3p4) p′

2 = 3
(
20p2 − 7p2

4

)
p′

3 = 6
√

15p3 (71)

one obtains, forp′
3 = 1, the matrixR of classE1(s = 1), reported in II:

R′
11(p̃

′) = −4p′
1p

′
3 + 3p′

2
2 − 27p′

2 + 18(2p′
3

2 + 9)

R′
12(p̃

′) = −6p′
1 + p′

3(5p′
2 + 54)

R′
13(p̃

′) = 2(3p′
2 + p′

3
2
)

R′
22(p̃

′) = 3p′x2 + 2(4p′
3

2 + 27)

R′
23(p̃

′) = p′
1 + 12p′

3

R′
33(p̃

′) = p′
2 + 9 .

(72)

3.10. TypeB4

The group acts onx = (x1, x2, x3, x4) by permutations and sign changes of the coordinates.
A MIB can be chosen as follows:{

pa(x) =
4∑
1

i
x10−2a

i

}
16a64

. (73)
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In this basis the essential elements of theP̂ (p) matrix turn out to be the following:

P̂11(p) = 4
(
28p1p2 + 14p2p

2
3 + 42p1p3p4 − 21p3

3p4 − 28p2p3p
2
4 + 14p1p

3
4 + 7p2

3p
3
4

−14p2p
4
4 + 7p3p

5
4 − p7

4

)
/3

P̂12(p) = 16p2
2 + 36p1p3 − 6p3

3 + 36p1p
2
4 − 18p2

3p
2
4 − 32p2p

3
4 + 18p3p

4
4 − 2p6

4

P̂13(p) = 4
(
20p2p3 + 30p1p4 − 15p2

3p4 − 20p2p
2
4 + 10p3p

3
4 − p5

4

)
/3

P̂22(p) = 3
(
20p2p3 + 30p1p4 − 15p2

3p4 − 20p2p
2
4 + 10p3p

3
4 − p5

4

)
/2

P̂23(p) = 24p1

P̂33(p) = 16p2

(74)

and after the followingMIBT:

p′
1 = 110 592p1 − 55 296p2

3 − 138 240p2p4 + 98 496p3p
2
4 − 15 066p4

4

p′
2 = 2304p2 − 2592p3p4 + 612p3

4

p′
3 = 48p3 − 21p2

4

(75)

one obtains, forp′
4 = 1, the matrixR of class E3(s = 1), reported in II:

R′
11(p̃

′) = 2p′
1(p

′
2 − 54) + 15p′

2
2 + 216p′

2p
′
3 + 324(4p′

3
2 + 18p′

3 + 81)

R′
12(p̃

′) = 6p′
1p

′
3 − p′

2
2 + 18p′

2(p
′
3 + 12) + 1620p′

3

R′
13(p̃

′) = 6p′
1 − p′

2(p
′
3 − 27) + 54p′

3

R′
22(p̃

′) = 4
[
3p′

1 − p′
2(p

′
3 + 9) + 27(p′

3
2 − 2p′

3 + 27)
]

R′
23(p̃

′) = p′
1 − 3p′

2 − 6p′
3

2 + 108p′
3

R′
33(p̃

′) = p′
2 − 12p′

3 + 81.

(76)

3.11. TypeD4

The group acts onx = (x1, x2, x3, x4) by permutations and by changes of an even number
of signs of the coordinates. AMIB can be chosen as follows:

p1(x) =
4∑
1

i
x6

i p2(x) =
4∑
1

i
x4

i p3(x) =
4∏

i=1

xi p4(x) =
4∑
1

i
x2

i . (77)

The essential elements of the associatedP̂ -matrix turn out to be the following:

P̂11(p) = 6(5p1p2 − 30p2
3p4 + 5p1p

2
4 − 5p2p

3
4 + p5

4)

P̂12(p) = 4(3p2
2 − 24p2

3 + 8p1p4 − 6p2p
2
4 + p4

4)

P̂13(p) = 6p2p3

P̂22(p) = 16p1

P̂23(p) = 4p3p4

P̂33(p) = (
2p1 − 3p2p4 + p3

4

)
/6

(78)

and, after the followingMIBT:

p′
1 = 12

(
12p1 − 15p2p4 + 4p3

4

)
p′

2 = 48
√

3p3 p′
3 = 6

(−2p2 + p2
4

)
(79)
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one obtains, forp′
4 = 1, the matrixR of class E2(s = 1), reported in II:

R′
11(p̃

′) = −4p′
1 + 5p′

2
2 + 5p′

3
2 + 12 R′

12(p̃
′) = 2p′

2(p
′
3 + 3)

R′
13(p̃

′) = p′
2

2 − p′
3(p

′
3 − 6) R′

22(p̃
′) = p′

1 + 3p′
3 + 6

R′
23(p̃

′) = 3p′
2 R′

33(p̃
′) = p′

1 − 3p′
3 + 6 .

(80)

3.12. TypeF4

The group is the group generated by all the reflections inR4 which leave invariant the
hyperplanesx2 − x3 = 0, x3 − x4 = 0, x4 = 0 andx1 − x2 − x3 − x4 = 0.

Let us define, forr = 2, 6, 8, 12:

Sk(x) =
k∑
1

i
xk

i

Ir (x) = (8 − 2r−1)Sr +
r/2−1∑

1
j

(
r

2j

)
S2j Sr−2j

=
∑

16i<j64

[(xj + xi)
r + (xi − xj )

r ] . (81)

Then, according to Metha, aMIB for the group can be defined to be the following:

p1(x) = I12(x) p2(x) = I8(x) p3(x) = I6(x) p4(x) = I2(x)/6 (82)

or, explicitly,

p1(x) = 924(x6
1 + x6

2 + x6
3 + x6

4)2 + 990(x4
1 + x4

2 + x4
3 + x4

4)(x8
1 + x8

2 + x8
3 + x8

4) + 132(x2
1

+x2
2 + x2

3 + x2
4)(x10

1 + x10
2 + x10

3 + x10
4 ) − 2040(x12

1 + x12
2 + x12

3 + x12
4 )

p2(x) = 70(x4
1 + x4

2 + x4
3 + x4

4)2 + 56(x2
1 + x2

2 + x2
3 + x2

4)(x6
1 + x6

2 + x6
3 + x6

4) − 120(x8
1

+x8
2 + x8

3 + x8
4) (83)

p3(x) = 30(x2
1 + x2

2 + x2
3 + x2

4)(x4
1 + x4

2 + x4
3 + x4

4) − 24(x6
1 + x6

2 + x6
3 + x6

4)

p4(x) = x2
1 + x2

2 + x2
3 + x2

4 .

The essential elements of the associatedP̂ (p) matrix turn out to be the following:

P̂11(p) = (
18 711p2

2p3 + 1 015 740p1p2p4 − 10 178 010p2p
2
3p4 − 625 680p1p3p

2
4

+12 496p3
3p

2
4 − 1 675 080p2

2p
3
4 − 5 264 820p2p3p

4
4 + 24 793 560p1p

5
4

+14 410 440p2
3p

5
4 − 254 481 480p2p

7
4 + 470 719 260p3p

8
4 − 1 709 728 560

p11
4

)
/810

P̂12(p) = 4
(
11 970p1p3 − 610p3

3 + 49 977p2
2p4 − 175 059p2p3p

2
4 + 428 220p1p

3
4

+110 052p2
3p

3
4 − 4 455 270p2p

5
4 + 9 531 630p3p

6
4 − 32 435 640p9

4

)
/405

P̂13(p) = 4
(
243p2

2 + 2259p2p3p4 + 15 480p1p
2
4 − 5572p2

3p
2
4 − 129 240p2p

4
4

+278 250p3p
5
4 − 847 260p8

4

)
/45

P̂22(p) = 16
(
21p2p3 + 84p1p4 − 28p2

3p4 − 840p2p
3
4 + 1890p3p

4
4 − 6120p7

4

)
/3

P̂23(p) = 32
(
18p1 + 7p2

3 − 63p2p
2
4 + 273p3p

3
4 − 1134p6

4

)
/9

P̂33(p) = 72
(−12+ p2p4 + 4p3p

2
4

)

(84)
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and, after the followingMIBT:

p′
1 = 96

√
6

(
288p1 − 77p2

3 − 3762p2p
2
4 + 8832p3p

3
4 − 29 511p6

4

)
/5

p′
2 = 108

(
16p2 − 56p3p4 + 255p4

4

)
/5

p′
3 = 6

√
6

(
2p3 − 15p3

4

) (85)

one obtains, forp′
4 = 1, the matrixR of class E4(s = 1), reported in II:

R′
11(p̃

′) = −6
[
12p′

1p
′
3 − 21p′

2
2 − p′

2(11p′
3

2 − 864) − 36(17p′
3

2 + 972)
]

R′
12(p̃

′) = −6
[
12p′

1 − p′
3(21p′

2 + p′
3

2 + 756)
]

R′
13(p̃

′) = p′
2

2 + 180p′
2 + 60p′

3
2

R′
22(p̃

′) = 6(9p′
2 + 7p′

3
2 + 972)

R′
23(p̃

′) = p′
1 + 180p′

3

R′
33(p̃

′) = 5p′
2 + 324.

(86)

3.13. TypeH4

The group is defined as the group generated by all the reflections inR4 which leave invariant
the hyperplanesx3 = 0, x4 = 0, τ−1x2 − τx3 − x4 = 0 andτ−1x1 − τx2 − x4 = 0, whereτ

is defined in (63).
For j, k, l, m in the set{1, 2, 3, 4}, let us define the following symbols:

ηjk =
{

−1 for j = k

1 otherwise
(87)

and the following expressions:

ξ(m, j, k, l; x) = τxjηmj + τ−1xkηmk + xlηml ; (88)

χ(j, k, l, n; x) = ξ(0, j, k, l; x)2n + ξ(j, j, k, l; x)2n + ξ(k, j, k, l; x)2n + ξ(l, j, k, l; x)2n

(89)

ψ(j, n; x) =
( 4∑

1
k
ηjkxk

)2n

. (90)

In(x) =
4∑
1

k
(2xk)

2n +
4∑
0

k
ψ(k; x) + χ(1, 2, 3, n; x) + χ(1, 3, 4, n; x)

+χ(1, 4, 2, n; x) + χ(2, 4, 3, n; x) . (91)

Then, according to Metha, aMIB for H4 can be chosen in the following way:

p1(x) = I30(x) p2(x) = I20(x) p3(x) = I12(x) p4(x) =
4∑
1

i
x2

i . (92)
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The essential elements of the associatedP̂ -matrix turn out to be the following:

P̂11(p) = 53 911p2p
3
3p4/7616+ 7 051 785p1p

2
3p

2
4/56+ 4 821 334 245p2

2p3p
3
4/25 432

+2 186 873 325p1p2p
4
4/34− 645 826 368 707p4

3p
5
4/150 528

−116 309 076 672 555p2p
2
3p

7
4/23 936− 211 651 127 025p1p3p

8
4/2

−21 238 646 708 813 625p2
2p

9
4/18 496− 283 066 493 617 380 915p3

3p
11
4 /9856

−2 811 241 304 150 172 075p2p3p
13
4 /544+ 2 218 140 033 302 250p1p

14
4

+7 676 790 020 731 375 739 325p2
3p

17
4 /224

−15 228 773 425 368 084 479 625p2p
19
4 /136

+253 639 342 346 876 415 408 375p3p
23
4 /8

−8 927 280 781 972 196 041 680 013 125p29
4 /4

P̂12(p) = 26 741p4
3/61 740+ 2 357 459p2p

2
3p

2
4/56+ 1 473 900p1p3p

3
4 + 482 714 505p2

2p
4
4/22

−1 869 793 842 241p3
3p

6
4/7056− 7 474 081 897 815p2p3p

8
4/44

+327 790 212 400p1p
9
4 + 66 300 758 108 151 125p2

3p
12
4 /308

−34 964 650 402 339 275p2p
14
4 + 128 303 960 304 363 056 775p3p

18
4

−993 168 612 785 995 074 523 500p24
4

P̂13(p) = 429 975p2
2/3179+ 4 236 791p3

3p
2
4/168+ 2 490 103 980p2p3p

4
4/187

+92 563 800p1p
5
4 − 7 157 961 621 135p2

3p
8
4/88− 330 008 206 170 825p2p

10
4 /34

+36 082 213 228 297 575p3p
14
4 − 271 058 613 666 147 798 750p20

4

P̂22(p) = 2 657 644p3
3p4/138 915+ 24 894 256p2p3p

3
4/21+ 5 074 562 560p1p

4
4/819

−1 343 036 354 024p2
3p

7
4/441− 644 361 278 880p2p

9
4

+49 357 102 179 756 800p3p
13
4 /21− 4 855 838 749 013 355 171 200p19

4 /273

P̂23(p) = 10 880p1/13+ 1 322 362p2
3p

3
4/21− 80 135 160p2p

5
4 + 296 137 692 080p3p

9
4

−29 473 265 236 173 600p15
4 /13

P̂33(p) = 5040p4(7p2 − 18 224p3p
4
4 + 167 747 160p10

4 )/17

(93)

and, after the followingMIBT:

p′
1 = 98 415 000

(
576p1/1001− 108 555p2

3p
3
4/539− 11 535 372p2p

5
4/187

+17 469 633 928p3p
9
4/77− 1 724 135 397 013 808p15

4 /1001
)

p′
2 = 2 187 000

(−6p2/187+ 1307p3p
4
4/11− 908 706p10

4

)
p′

3 = 1620
(−p3/7 + 1130p6

4

) (94)

one obtains, forp′
4 = 1, the matrixR of class E5(s = 1) reported in II†:

R̂′
11(p

′) = −36p2
2(−25 380+ 19p3) + 90p1(−1 166 400+ 12p2 + 1 080p3 + p2

3)

−p2(−75 582 720 000− 342 921 600p3 − 6 480p2
3 + 29p3

3)

+45(918 330 048 000 000+ 906 992 640 000p3 + 1 102 248 000p2
3

−339 120p3
3 + 209p4

3)

† In II, the sign of the monomialp1p3 in the expression ofR′
11 is wrong and should be changed.
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R̂′
12(p

′) = −486p2
2 + 360p1(540+ p3) − 9p2(−34 992 000− 3 240p3 + 19p2

3)

−p3(−89 754 480 000+ 28 431 000p3 − 45 360p2
3 + p3

3) (95)

R̂′
13(p

′) = 2 160p1 + p2
2 − 1 980p2(−1080+ p3) − 55(−4860+ p3)p

2
3

R̂′
22(p

′) = 212 576 400 000+ 540p1 − 45 927 000p3 + 218 700p2
3 − 19p3

3

−324p2(2025+ p3)

R̂′
23(p

′) = p1 − 810p2 − 495(−2700+ p3)p3

R̂′
33(p

′) = 11p2 − 6 750(−1296+ p3) .

4. Reducible reflection groups with 2, 3 and 4 basic invariants

In this section we shall state the rules for building theP̂ -matrices of a reducible coregular
linear groupG, in a standardA-basis, starting from theP̂ -matrices associated to its
irreducible components. This will allow us, in particular, to derive the explicit form of
the P̂ -matrices of all the reducible reflection groups whose orbit spaces have dimensions
6 4 and state which of the allowablêP -matrices determined in I and II are related to these
groups.

Let G(1) andG(2) be irreducibleCLGs, acting, respectively, inRn1 andRn2. Then, the
set of matrices

G = {g(1) ⊕ g(2)} g(α)∈G(α)

α=1,2
(96)

forms a coregular linear group, acting on the vectorsx = x(1)⊕x(2), x ∈ Rn1+n2 = Rn1⊕Rn2.
If the groupsG(α), α = 1, 2 are generated by reflections,G is a reflection group isomorphic
to G1 ⊗ G2.

Let us denote byp(α)
i (x(α)), i = 1, . . . , qα, x(α) ∈ Rnα the elements of a standard

MIB relative toG(α), α = 1, 2 and by{d(α)
i }, P̂ (α)(p(α)) the associated set of degrees and

P̂ -matrix. We shall assumed(1)

1 > d
(2)

1 .
A set of basic polynomial invariants ofG is yielded by

p(+)(x) = {p(1)(x(1)), p(2)(x(2))} (97)

and the associated̂P -matrix has the following form:

P̂ (+)(p(+)) = P̂ (1)(p(1)) ⊕ P̂ (2)(p(2)) . (98)

If {p(α)} is a standardA-basis relative toG(α), A(α)(p(α)) is the complete active factor
of detP̂ (α)(p(α)) andw(α) is its weight, then

A(+)(p(+)) = A(1)(p(1))A(2)(p(2)) (99)

is the complete active factor of detP̂ (+); it satisfies the following relations:

q1+q2∑
1

b
P̂

(+)
ab (p(+))∂bA

(+)(p(+)) = λ(+)
a A(+)(p(+)) a = 1, . . . , q1 + q2 (100)

where

λ(+) = λ(1) ⊕ λ(2) = (0, . . . , 0, 2w(1), 0, . . . , 0, 2w(2)) . (101)
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Therefore, a standardA-basis{p} of G can be obtained from{p(+)} by means of a basis
transformationp = f (p(+)), with f (p(+)) defined, for instance, by the following relations:

pk = p
(+)

i(k) k = 1, . . . , q1 + q2 − 2

pq1+q2−1 = bq1+q2−1
(
w(2)p(1)

q1
− w(1)p(2)

q2

)
pq1+q2 = p(1)

q1
+ p(2)

q2

(102)

in (102), the set{i(1), . . . , i(q1+q2−2)} is a permutation of the indices{1, . . . , q1+q2−2},
such that the degrees of the invariantspk are non increasing functions ofk. The parameters
bk are arbitrary and will be chosen so that theP̂ -matrices can be easily compared with the
results reported in I and II.

The P̂ -matrix associated to theMIB {p} is determined by the following relation (see
equation (15)):

P̂ (p) = J (p(+)) P̂ (+)(p(+)) J T (p(+))

∣∣∣
p(+)=f −1(p)

(103)

whereJ (p(+)) denotes the Jacobian matrix

Jab(p
(+)) = ∂fa(p

(+))

∂p
(+)
b

a, b = 1, . . . , q1 + q2 . (104)

In the aim of determining thêP -matrices of all the reducible reflection groups whose
orbit spaces have dimensions 3 and 4, let us now specialize the construction we have
described to the casesq1 = 2, q2 = 1, 2 and to each of the different cases one can get
starting fromq1 = 3, q2 = 1. We shall denote byw the weight of the complete active
factor A(p) of detP̂ (p):

w = w(+) = w(1) + w(2) . (105)

Below, for each of the different reducible groups that can be obtained in this way, we
shall list the values of the degrees, the explicit form of the matrixR(+), the MIBT leading
to a standardA-basis and the transformed form of the matrixR(p), evaluated atpq = 1,
to be compared with the results of I and II.

4.1. Caseq1 = 2, q2 = 1

d1 = d
(1)

1 = m + 1 d3 = d
(2)

1 = 2

d2 = d
(1)

2 = 2 w = 2d
(1)

1 + 2 = 2m + 4
m ∈ N∗ (106)

R
(+)

11 (p(+)) = p
(1)

2

m
R

(+)

a3 (p(+)) = 0 a = 1, 2

R
(+)

12 (p(+)) = p
(1)

1 R
(+)

33 (p(+)) = p
(2)

1

R
(+)

22 (p(+)) = p
(1)

2 R
(+)

44 (p(+)) = p
(2)

2

(107)

p1 = (2 + m)m/2p
(1)

1 p2 = −p
(1)

2 + (m + 1)p
(2)

1 p3 = p
(1)

2 + p
(2)

1 (108)

R11(p) = [
(1 + m)p3 − p2

]m
R22(p) = (1 + m)p3 + mp2

R12(p) = −p1 Ra3(p) = pa a = 1, 2, 3
(109)

which, for p3 = 1, is the class IIR-matrix reported in II.
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4.2. Caseq1 = 2, q2 = 2

d1 = d
(1)

1 = j1 + 1 d3 = d
(1)

2 = 2

d2 = d
(2)

1 = j2 + 1 d4 = d
(2)

2 = 2
j1, j2 ∈ N∗ (110)

w = w(1) + w(2) = 2(j1 + j2 + 2) (111)

R
(+)

11 (p(+)) = p
(1)

2

j1
R

(+)

22 (p(+)) = p
(1)

2 R
(+)

34 (p(+)) = p
(2)

1

R
(+)

12 (p(+)) = p
(1)

1 R
(+)

33 (p(+)) = p
(2)

2

j2
R

(+)

44 (p(+)) = p
(2)

2

R
(+)
ab (p(+)) = 0 a = 1, 2 b = 3, 4

(112)

p1 = (j1 + j2 + 2)j1/2p
(1)

1 p3 = (j2 + 1)p2 − (j1 + 1)p4

p2 = (j1 + j2 + 2)j1/2p
(2)

1 p4 = p
(1)

2 + p
(2)

2

(113)

R11(p) = (j1 + j2 + 2)[−p3 + (j1 + 1)p4]j1 R12(p) = 0

R22(p) = (j1 + j2 + 2)[p3 + (j2 + 1)p4]j2 R13(p) = −(j2 + 1)p1

R33(p) = (j1 + 1)(j2 + 1) + (j1 − j2)p3 R23(p) = (j1 + 1)p2

(114)

which, for p3 = 1, is the class A8(j1, j2) R-matrix reported in II. Forji = 1 the group
G(i) ' Z2 ⊗ Z2 is reducible.

4.3. Casesq1 = 3, q2 = 1

d1 = d
(1)

1 d3 = d
(1)

3

d2 = d
(1)

2 d4 = d
(2)

1

w = w(1) + 2 (115)

R(+)(p(+))ab = R
(1)
ab (p(1)) a, b = 1, 2, 3

R(+)(p(+))a4 = 0 a = 1, 2, 3

R(+)(p(+))44 = R
(2)

11 (p(2)) = p
(2)

1

(116)

p1 = b1p
(1)

1 p3 = b3
(
p

(1)

3 − w(1)p
(2)

1 /2
)
p2 = b2p

(1)

2 p4 = p
(1)

3 + p
(2)

1 . (117)

The matrixR(1) can be chosen from three different classes, denoted as III.1, III.2, III.3
in II and corresponding, respectively, to the groups of typeA3 (or D3), B3 andH3.

Choosing asG(1) a typeA3 group one obtains:

d1 = 4 d3 = d4 = 2

d2 = 3 w(1) = 12
(118)

p1 = 49p(1)

1 p3 = p
(1)

3 − 6p
(2)

1

p2 = −73/2p
(1)

2 p4 = p
(1)

3 + p
(2)

1

(119)

R11(p) = 7
[
p2

2 − p1(p3 + 6p4) + 2(p3 + 6p4)
3
]

R22(p) = 7
[
p1 + 2(p3 + 6p4)

2
]

R12(p) = 14p2(p3 + 6p4)

R13(p) = p1 R23(p) = p2 R33(p) = −5p3 + 6p4

(120)

which, for p4 = 1, is the class B4(s = 1) R-matrix reported in II.
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Choosing asG(1) a typeB3 group one obtains:

d1 = 6 d3 = d4 = 2

d2 = 4 w(1) = 18
(121)

p1 = 103p
(1)

1 p3 = p
(1)

3 − 9p
(2)

1

p2 = −102p
(1)

2 p4 = p
(1)

3 + p
(2)

1

(122)

R11(p) = 10
{
p1

[
p2−4(p3+9p4)

2
]+8(p3 + 9p4)

[
p2

2 + 2p2(p3 + 9p4)
2 + 8(p3 + 9p4)

4
]}

R12(p) = 10
{
2p1(p3 + 9p4) − p2

[
p2 − 12(p3 + 9p4)

2
]}

R22(p) = 10
{
p1 − 4(p3 + 9p4)

[
p2 − 4(p3 + 9p4)

2
]}

R13(p) = p1 R23(p) = p2 R33(p) = −8p3 + 9p4

(123)

which, for p4 = 1, is the class C6(1)R-matrix reported in II.
Choosing asG(1) a typeH3 group one obtains:

d1 = 10 d3 = d4 = 2

d2 = 6 w(1) = 30
(124)

p1 = 165p
(1)

1 p3 = p
(1)

3 − 15p(2)

1

p2 = −163p
(1)

2 p4 = p
(1)

3 + p
(2)

1

(125)

R11(p) = 16
{
4p1(p3 + 15p4)

[
p2 − 3(p3 + 15p4)

3
] − [

p2 − 48(p3 + 15p4)
3
]

(126)

× [
p2

2 + 4p2(p3 + 15p4)
3 + +24(p3 + 15p4)

6
]}

R12(p) = 16(p3 + 15j1p4)
[−5p2

2 + 6p1(p3 + 15p4) + 60p2(p3 + 15p4)
3
]

R22(p) = 16
[
p1 − 14p2(p3 + 15p4)

2 + 96(p3 + 15p4)
5
]

R13(p) = p1 R23(p) = p2 R33(p) = −14p3 + 15p4 (127)

which, for p4 = 1, is the class D4(j1) R-matrix reported in II.

5. Concluding remarks on the mathematical results

Starting from explicit forms for the basic polynomial invariants of the finite coregular
groups, that can be found in the mathematical literature, we have computed the associated
P̂ (p) matrices. The equalities and inequalities, defining the orbit spaces of the groups as
semi-algebraic sub-varieties ofRq , can be easily obtained as semi-positivity conditions on
these matrices.

The computation has been limited to the coregular groups with less than five basic
polynomial invariants, since the main aim of our work was to test the completeness of the
allowable solutions of the canonical equation listed in I and II and to find the corresponding
generating groups. The test has been positive: all theP̂ -matrices generated by finite
coregular groups appear in the lists of allowableP̂ -matrices reported in I and II. In particular,

(i) For q = 2 all the allowableP̂ -matrices are generated by coregularfinite groups; the
caseq = 2 is exceptional, since the canonical equation puts no restrictions on the
allowable P̂ -matrices. On the contrary, forq = 3, 4, only the fundamental elements
(scale parameters = 1) of some towers of allowablêP -matrices are generated by
coregularfinite groups; in this case, the existence of towers of solutions of the canonical
equation probably has no group-theoretical meaning, but is only an artefact related to an
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invariance of the canonical equation under scaling of the degrees of the basic polynomial
invariants. By now, however, we cannot exclude that the higher elements in the towers
are generated by non-finite groups.

(ii) For q = 2, 3, 4 all the fully active allowable solutions of the canonical equation are
generated byfinite coregular linear groups; theirreducible ones are associated to
irreducible linear groups.

As for the fundamental allowablêP -matrices for which we have not found a finite
coregular generating group, various, more or less obvious, interpretations are possible; they
might be generated by

(i) non-finite compact coregular groups,
(ii) non-coregular groups,
(iii) non-minimal integrity bases of finite or non-finite compact coregular groups,
(iv) direct sums of non-fundamental allowablêP -matrices.

This is probably an incomplete list.
We shall try to clarify this point in two forthcoming papers. The correspondence between

the classification of the allowablêP -matrices determined in I and II and the generating finite
reflection groups with less than five basic polynomial invariants is summarized in tables 1–
4, where by a group of typeI2(1) we mean the groupZ2⊗Z2, (Z2 = {±1}). The case
q = 1 is trivial, as there is only one allowablêP -matrix generated by the groupZ2. For
q = 2, for each choice of the degreed1 there is only one equivalence class of allowable
P̂ -matrices, which are generated by at least one finite coregular linear group. Forq = 3, all
the fundamental elements in each tower of (classes of) allowable solutions are generated by
at least one finite coregular group, but for theP̂ -matrices of class I. Forq = 4, the number
of (classes of) reducible allowable solutions which are not generated by at least one finite
coregular group is much higher.

Table 1. Correspondence between classes of allowable solutions of the canonical equation
(labelled by the degreed1) and finite coregular generating groups, forq = 2.

Group Z2 ⊗ Z2 A2, I2(3) B2, I2(4) I2(5) G2, I2(6) I2(m)

d1 2 3 4 5 6 m > 6

Table 2. Correspondence between classes of fundamental allowable solutions of the canonical
equation, degrees of the basic invariants and finite coregular generating groups, forq = 3.

Group I2(m + 1)⊗Z2 A3, D3 B3 H3

(d1, d2) (m + 1, 2) (4, 3) (6, 4) (10, 6)

Class II(m), m ∈ N∗ III.1 III.2 III.3

Table 3. Correspondence between classes of irreducible fundamental allowable solutions of the
canonical equation, degrees of the basic invariants and finite coregular irreducible generating
groups, forq = 4.

Group A4 D4 B4 F4 H4

(d1, d2, d3) (5, 4, 3) (6, 4, 4) (8, 6, 4) (12, 8, 6) (30, 20, 12)
Class E1 E2 E3 E4 E5
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Table 4. Correspondence between classes of reducible fundamental allowable solutions of the
canonical equation, degrees of the basic invariants and finite coregular reducible generating
groups, forq = 4.

Group I2(j1 + 1)⊗I2(j2 + 1) A3⊗Z2, D3⊗Z2 B3⊗Z2 H3⊗Z2

(d1, d2, d3) ((j1 + 1), (j2 + 1), 2) (4, 3, 2) (6, 4, 2) (10, 6, 2)

Class A8(j1, j2) , j1 > j2 ∈ N∗ B4(1) C6(1) D4(1)

6. Physical applications. An example

The P̂ matrix approach to the study of orbit spaces has been, or can be used, in various
physical contexts, where the study of covariant functions is important, as already stressed
in the introduction. Typical examples are the determination of patterns of spontaneous
symmetry and/or supersymmetry breaking [20, 7] in gauge-field theories of elementary
particles, the analysis of phase spaces and structural phase transitions in the framework of
Landau’s theory [49, 50] and in cosmology (phase transitions in the hot Universe [51]).
Applications can be found in covariant bifurcation theory [52] or in crystal field theory and
in most areas of solid state theory where use is made of symmetry adapted functions.

Most of the groups dealt with in the preceding sections are crystallographic groups, they
are therefore symmetry groups of regular polyhedra in two, three or four dimensions and of
root diagrams of simple Lie algebras. In particular,I2(m) denotes, in Coxeter’s notation,
the dihedral group denoted byCnv in the standard physical notation [49],I2(m)⊗Z2 denotes
Dnh, while D3, B3 andH3 correspond, respectively, to the groupsTd , Oh andYh; F4 is the
symmetry group of a regular solid inR4 with 24 three-dimensional octahedral faces;H4 is
the symmetry group of a regular solid inR4 with 120 three-dimensional dodecahedral faces
or, dually, of a regular 600-sided solid with tetrahedral faces; the groupsA3, A4, B4 and
D4 are strictly related to permutation groups or semi-direct products of permutation groups
and sign change groups, as explained in section 3.

Solid state physics is, therefore, a natural physical context where our results can be
exploited. As an example of the use of theP̂ -matrix approach to the analysis of properties of
an invariant function, and, in particular, of the determination of the location of its stationary
points and of its absolute minimum, in this section we shall study a six-degree expansion of
a Landau thermodynamic potentialG(x; π, T ), which depends on the vector valued order
parameterx = (x1, x2, x3), transforming according to the fundamental representation of the
groupOh. At the end we shall restrict our results to BaTiO3 and determine its phase space
using an oversimplified expression for its free energy.

6.1. The orbit space of the groupOh and its stratification

In the Coxeter notations used in the preceding sections, the fundamental representation of
the groupOh corresponds to the groupB3, for which anMIB is specified in (56) and the
correspondingP̂ -matrix in (57) and (13), withd1 = 6, d2 = 4, d3 = 2.

To describe the geometry of the imagēS of the orbit space ofOh, let us define the
following auxiliary polynomial functions ofp:

f1(p) = −p2 + p2
3 f2(p) = −p1 + p3

3

f3(p) = 3p2 − p2
3 f4(p) = 9p1 − p3

3 f5(p) = 2p2 − p2
3 (128)
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f6(p) = 4p1 − p3
3 f7(p) = p3

3 − 3p3p2 + 2p1

f8(p) = −p6
3 + 9p2p

4
3 − 8p1p

3
3 − 21p2

2p
2
3 + 36p1p2p3 + 3p3

2 − 18p2
1 .

The shape and primary stratification ofS̄ can be immediately deduced from an inspection
of the condition

detP̂ (p) = f7(p)f8(p) = 0 (129)

the results obtained in this way are confirmed by a complete analysis of the positivity and
rank conditions on the matrix̂P(p) defined in (57). The section4 of the orbit space with
the planep3 =consantt is plotted in figure 1, where the axes are labelled by the adimensional
variables

u = p2/p
2
3 v = p1/p

3
3 . (130)

The determination of the isotropy type stratification ofS̄, that is the determination of
the orbit types of the different primary strata, requires a sounder analysis: for a convenient
choice of the pointp̄ in each stratum, one has first to find a solutionx̄ = (x̄1, x̄2, x̄3) of the
following equations†:

x6
1 + x6

2 + x6
3 = p̄1x

4
1 + x4

2 + x4
3 = p̄2x

2
1 + x2

2 + x2
3 = p̄3 (131)

Figure 1. Stratification of the orbit space of the groupOh. The numbersj , j = 1, . . . 5, label
the singular isotropy type strata6j defined in table 5.

and then, to determine the isotropy subgroup ofOh at x̄, by selecting the transformations
of Oh which leavex̄ invariant.

A solution x̄ of (131) for each stratum is easily found by noting that

detP̂ (p(x)) = f7(p(x))f8(p(x))

= 36x2
1x2

2x2
3(x2

1 − x2
2)2(x2

2 − x2
3)2(x2

3 − x2
1)2. (132)

The results one obtains are reported in table 5.

† The numbers(x̄1, x̄2, x̄3) are the non-negative solutions of the real equation
∑3

0k
akz

k = 0, with a0 =
(−p̄3

3 + 2p̄2p̄3 − 2p̄1)/6 (= −x̄2
1 x̄2

2 x̄2
3), a1 = (p̄2

3 − p̄2)/2 (= x̄2
1 x̄2

2 + x̄2
2 x̄2

3 + x̄2
3 x̄2

1), a2 = p̄3 (= x̄2
1 + x̄2

2 + x̄2
3),

a3 = 1.
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Table 5. Isotropy type strata of the orbit space of the 3-dimensional representation of the group
Oh.

Strata Defining relations inRq Typical points inRn

60 = {Oh} p1 = p2 = p3 = 0 x̄1 = x̄2 = x̄3 = 0
61 = {C4v} f1 = f2 = 0 < p3 x̄1 = 1, x̄2 = x̄3 = 0
63 = {C3v} f3 = f4 = 0 < p3 x̄1 = x̄2 = x̄3 = 1
62 = {C2v} f5 = f6 = 0 < p3 x̄1 = 0, x̄2 = x̄3 = 1
64 = {C′

s} f8 = 0 < f3, f7, p3 x̄1 = 1, x̄2 = x̄3 = 2
65 = {C′

s} f7 = 0 < f1, f5, p3 x̄1 = 0, x̄2 = 1, x̄3 = 2
6p = {C1} 0 < f7, f8, p3 x̄1 = 1, x̄2 = 2, x̄3 = 3

6.2. The absolute minimum of the potential. Phase transitions

Let us now build the potential

G(x; π, T ) = Ĝ(p(x); π, T ) (133)

as the most general sixth orderOh invariant polynomial function of the order parameters,
the coefficientsc, Ai andBj being functions of the pressureπ and the absolute temperature
T :

Ĝ(p; π, T ) = 1
2cp3 + 1

4(A0p
2
3 + A1p2) + 1

6(B0p
3
3 + B1p3p2 + B2p1) . (134)

In order to assure stability of the system, we shall require thatG(x; π, T ) is bounded
below. This occurs if and only if the coefficient ofp3

3 in the asymptotic form ofĜ for
p3 → ∞:

Cas(u, v) = 1
6 (B0 + B1u + B2v) (135)

is everywhere positive on4, i.e. iff its minimum in 4 is > 0. Since the equation
Cas(u, v) = constant defines straight lines in the plane(u, v) andS̄ is inscribed in a triangle
with vertices at the points representing the strata{Civ}, i = 2, 3, 4 (see figure 1), one easily
realizes thatCas(u, v) is bound to take on its absolute minimum at at least one of the
vertices. Therefore,̂G(p; π, T ) is bounded below if and only if the following inequalities
are satisfied:

Cas(u, v)|{C2v} = (4B0 + 2B1 + B2)/4 > 0

Cas(u, v)|{C3v} = (9B0 + 3B1 + B2)/9 > 0

Cas(u, v)|{C4v} = B0 + B1 + B2 > 0 .

(136)

Being Ĝ(p; π, T ) a linear function of(p1, p2), for fixed p3, the extremal points of
Ĝ(p; π, T ) lie necessarily on the boundary of̄S and can be determined [21] using, for
instance, the standard method of Lagrange multipliers. Denoting byfA = 0, A ∈ I(0)

α and
fA > 0, A ∈ I(+)

α the algebraic relations defining the isotropy stratum6α, the conditions
one obtains can be written in the following form:

∂Ĝ

∂pa

=
∑

A∈I(0)
α

λA

∂fA

∂pA

a = 1, 2, . . . , q

fA = 0 A ∈ I(0)
α

fA > 0 A ∈ I(+)
α

(137)

where theλ’s are Lagrange multipliers.
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The determination of the absolute minimum and of its location(s) is made much easier
if one notes thatĜ(p; π, T ) necessarily takes on its absolute minimum in some point of
one of the strata{Oh}, {Civ}, i = 2, 3, 4†, like Cas(u, v) and for the same reasons.

By indexing these strata in the following way:

60 = {Oh} 61 = {C4v} 62 = {C2v} 63 = {C3v} (138)

the relations determining the stationary points of the potential can be put in a very compact
form.

The relations defining the strata6k, which can be read from table 5, allow us to express
p1 andp2 in terms ofp3, so that we can define

Ĝk(p3; π, T ) = Ĝ(p; π, T )
∣∣
6k

k = 0 . . . , 3 . (139)

Explicitly,

Ĝ0(0; π, T ) = 0 (140)

Ĝk(p3; π, T ) = p3

(
c

2
+ akp3

4
+ bkp

2
3

6

)
p3 > 0 (141)

where
ak = A0 + A1 k−1

bk = B0 + B1 k−1 + B2 k−2
k = 1, 2, 3 (142)

and, owing to (136),bk > 0.
Now, it is trivial to realize that forc < 0, each of the functionŝGk(p3; π, T ), k = 1, 2, 3

has a local minimum, which is unique and is located atp3 = p3,k, where

p3,k =
(
−ak +

√
a2

k − 4bkc
)

2bk

. (143)

At p3 = p3,k, the functionĜk(p3; π, T ) takes on the value:

Ĝmin
k (π, T ) = 1

48b2
k

(
ak −

√
a2

k − 4bkc

) (
a2

k − 8bkc − ak

√
a2

k − 4bkc

)
k = 1, 2, 3 .

(144)

For c > 0, the existence of local minima for̂Gk(p3; π, T ) depends on the values taken
on by A0 andA1.

To determine the absolute minimum of̂G(p; π, T ) and the phase space, one has to
compare the values taken on by the functionsĜmin

k (π, T ).
To be specific, let us restrict our results to the case thatG(x; π, T ) is an expansion in

the order parameters of the free-energy of BaTiO3. Following Kim [53], we shall consider
the following two possibilities, in which a possible dependence on the pressureπ is ignored
andCGS units are used:

c = 7.4(T − 110) × 10−5

B0 = 0

A0 = 1.15× 10−12

A1 = (−0.99− 1.15) × 10−12

B1 = 0

B2 = 0.249× 10−21

(145)

† The possibility of a degenerate minimum crossing the strata{C2v}, {C′
s} and{C4v} can be excluded by a direct

check.
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Table 6. Stable phases of BaTiO3 at different temperatures with the first choice for the parameters
involved in the definition of the free energy.

Phase Range of temperatures

[Oh] = cubic T > 119.97 ◦C
[Oh], [C4v ] T = Tc1 = 119.97 ◦C
[C4v ] = tetragonal 119.97 ◦C > T > 14.77 ◦C
[C4v ], [C2v ] T = Tc2 = 14.77 ◦C
[C2v ] = orthorhombic 14.77 ◦C > T > −87.49 ◦C
[C2v ], [C3v ] T = Tc3 = −87.49 ◦C
[C3v ] = rhombohedral −87.49 ◦C > T

Table 7. Stable phases of BaTiO3 at different temperatures with the second choice for the
parameters involved in the definition of the free energy.

Phase Range of temperatures

[Oh] = cubic T > 115.40 ◦C
[Oh, [C4v ] T = Tc1 = 115.40 ◦C
[C4v ] = tetragonal 115.40 ◦C > T > −233.52 ◦C
[C4v ], [C2v ] T = Tc2 = −233.52 ◦C
[C2v ] = orthorhombic −233.52 ◦C > T

c = 7.4(T − 110) × 10−5

B0 = 0

A0 = 12× 10−13

A1 = 4 × 4.5(T − 175) × 10−15 − 12× 10−13

B1 = 24× 10−23

B2 = 30× 10−23 .

(146)

Then, using the data specified in (145), forT > 119.97 ◦C, the free energy takes on
its absolute minimum at60; thus only the disordered cubic phase [Oh] is stable at these
temperatures. AtT = 119.97 ◦C, the functionĜmin

1 (T ) vanishes, so that the cubic and
tetragonal phases coexist. For 119.97 ◦C < T < 14.77 the absolute minimum sits on{C4v}
and the tetragonal phase [4v] is stable. AtT = 14.77 ◦C, the absolute minimum shifts
to {C2v} and for 14.77 ◦C < T < −87.49 the stable phase is the orthorhombic one. At
T = −87.49 the absolute minimum shifts to{C3v} and forT < −87.49 the stable phase is
the rhombohedral one.

These results, and the analogous ones obtained using the data specified in (146), of
(146), are resumed in tables 6 and 7.

If the free energy is expanded as a sufficiently high degree polynomial in the order
parametersx, and for a convenient choice of the coefficients as functions ofT , all the phases
represented by the isotropy type strata of the orbit space ofOh may become accessible (as
stable phases) to the system at convenient temperatures. In particular, the sub-principal
strata require at least an 8th-degree polynomial, while the principal stratum requires at least
a 12th-degree polynomial.

References

[1] O’Raifeartaigh 1979Rep. Prog. Phys.49 159–223



Orbit spaces of reflection groups 223

[2] Bernstein J 1974Rev. Mod. Phys.46 7–48
[3] Michel L 1980 Rev. Mod. Phys.52 617–51
[4] Michel L 1981Symmetries and Broken Symmetries in Condensed Matter Physicsed N Boccara (Paris: IDSET)

21–8
[5] Coleman S 1966J. Math. Phys.7 787–97
[6] Wess J and Bagger J 1983 Supersymmetry and supergravity (Princeton, NJ: Princeton University Press)
[7] Gatto R and Sartori G 1987Commun. Math. Phys.109 327–52
[8] Michel L and Mozrzymas J 1978Lecture Notes in Physics79 447–61
[9] Morse and Cairns S S 1969Analysis and Differential Topology(New York: Academic)

[10] Bott R 1982Bull. Am. Math. Soc.7 331
[11] Houston P J and Sen S 1984J. Phys. A: Math. Gen.17 1163
[12] Gufan Yu M 1971Sov. Phys. Solid State13 175–84
[13] Gufan Yu M and Sakhnenko V P 1973Sov. Phys.–JEPT36 1009–12
[14] Killingbeck J 1972J. Phys. C: Solid State Phys.5 2037–44, 2497–502
[15] Kopsky V 1975J. Phys. C: Solid State Phys.8 3251–66
[16] Kopsky V 1978J. Math. Phys.19 574–6
[17] Kopsky V 1979J. Phys. A: Math. Gen.12 429–43
[18] Kopsky V 1979J. Phys. A: Math. Gen.12 943–57
[19] McLellan A G 1974J. Phys. C: Solid State Phys.7 3326–40
[20] Abud M and Sartori G 1981Phys. Lett.104B 147–52
[21] Abud M and Sartori G 1983Ann. Phys.150 307–72
[22] Mumford D 1965Geometric Invariant Theory Erg. Math. 34(Berlin: Springer)
[23] Munford D and Fogarty J 1982Geometric Invariant Theory2nd ednErgeb. Math. Grenzgeb.34 (Berlin:

Springer)
[24] Sartori G 1983J. Math. Phys.24 765–8
[25] Procesi C and Schwarz G W 1985Inv. Math.81 539–54
[26] Coxeter H S M 1984Ann. Math.35 588–621
[27] Coxeter H S M 1951Duke Math. J.18 765–82
[28] Flatto L 1968Bull. Am. Math. Soc.74 730–4
[29] Flatto L 1978Enseign. Math.24 237–92
[30] Ignatenko V F 1986Sov. Maths.33 933–53
[31] Mehta M L 1988Commun. Algebra16 1083–98
[32] Saito K, Yano T and Sekiguchi J 1980Commun. Algebra8 373–408
[33] Schwarz G W 1978Invent. Math.49 167–91
[34] Kraft H 1984Aspekte der Matematik D1(Wiesbaden: Vieweg)
[35] Jaríc M V, Michel L and Sharp R T 1983Group Theoretical Methods in Physics(Lecture Notes in Physics

180) pp 317–8
[36] Sartori G 1989Mod. Phys. Lett.A 4 91–8
[37] Sartori G and Talamini V 1991Commun. Math. Phys.139 559–88
[38] Sartori G 1991Nuovo Cimento14 1–120
[39] Sartori G and Talamini V 1994JGTP 2 13–39
[40] Sartori G and Talamini V 1993Ana. de Fisica, Monografiasvol 1 ed M A del Olmo, M Santander and

J Mateos Guilarte pp 459–62
[41] Sartori G and Talamini V in preparation
[42] Sartori G and Valente G in preparation
[43] Bredon G E 1972Introduction to Compact Transformation Groups(New York: Academic)
[44] Schwarz G W 1980Inst. Hautes Etudes Sci. Publ. Math.51 37–135
[45] Hilbert D 1890Math. Ann.36 473–534; 1893Math. Ann.42 313–73
[46] Noether E 1916Math. Ann.77 89–92
[47] Whitney H 1957Ann. Math.66 545–56
[48] Shephard G C and Todd J A 1954Canad. J. Math.6 274–304
[49] Landau L D and Lifschitz E 1958Statistical Physics(London: Pergamon)
[50] Landau L D 1937Zh. Eksp. Teor. Fiz.7 19
[51] Linde A 1990Particle Physics and Inflationary Cosmology(New York: Harwood)
[52] Geiger C and G̈uttinger W 1987The Physics Of Structure Formationed W G̈uttinger and G Dangelmayr

(Berlin: Springer)
[53] See, for instance, Kim J S 1985Phys. Rev.B 31 1433–7 and references therein


